# フルカラー高解像度 CGH 用 カラーフィルタの設計とその光学再生像 Design of Color Filter for Full-Color High-Definition CGH and Optical Reconstruction

| 土山泰裕1                                                                                   | 松島恭治1                         | 中原住雄 2                      | 坂本雄児 <sup>3</sup>          |  |
|-----------------------------------------------------------------------------------------|-------------------------------|-----------------------------|----------------------------|--|
| Yasuhiro Tsuchiyama <sup>1</sup>                                                        | Kyoji Matsushima <sup>1</sup> | Sumio Nakahara <sup>2</sup> | Yuji Sakamoto <sup>3</sup> |  |
| Ⅰ関西大学 システム理工学部 電気電子情報工学科                                                                |                               |                             |                            |  |
| <sup>1</sup> Department of Electrical and Electronic Engineering, Kansai University     |                               |                             |                            |  |
| 2関西大学 システム理工学部 機械工学科                                                                    |                               |                             |                            |  |
| <sup>2</sup> Department of Mechanical Engineering, Kansai University                    |                               |                             |                            |  |
|                                                                                         | 3北海道大学大学院情                    | 報科学研究科                      |                            |  |
| <sup>3</sup> Graduate School of Information Science and Technology, Hokkaido University |                               |                             |                            |  |

# ABSTRACT

A simulation technique of full-color reconstruction is presented for designing properties of color filters. In the technique of full-color high-definition CGHs using a color filter, the color filter is used for narrowing the band of white light illumination. However, the 3D image reconstructed in earlier study was too dark to exhibit it under ordinary room lighting condition, because the properties of the color filter used were not appropriate for the high-definition CGH. In this paper, full-color high-definition CGHs using the designed color filter are demonstrated for verifying the proposed technique. **Keywords:** computer holography, computer-generated hologram, full-color holography, full-color reconstruction

## 1. はじめに

コンピュータホログラフィの発達に伴い,従来の 光学ホログラムとほぼ同質の像を再生する数 10~ 数 100 億ピクセル規模の計算機合成ホログラム (CGH)が作成可能になっている[1].しかし,従来の CGH は単色像の再生のみ可能で,フルカラー再生は できなかった.

近年,フルカラーCGH の手法がいくつか提案され ている. 我々は, RGB3 色の高解像度 CGH を再生し, ダイクロイックミラーで各色の再生像を重畳するこ とでフルカラー再生する手法を報告している[2].し

# 土山泰裕

<tsuchiyama@laser.ee.kansai-u.ac.jp> 関西大学システム理工学部電気電子情報工学科 〒564-8680 大阪府吹田市山手町3-3-35 TEL 06-6368-1121(内線 5722) かし、この手法は大型のダイクロイックミラーが必要なため可搬性が乏しく、その調整が難しいなどの問題がある。そのため、この手法によるフルカラー高解像度 CGH をミュージアムなどで展示するのは容易ではない。また、RGB 各色の光を反射するダイクロイックミラーそのもので干渉縞を形成し、それら3 色の干渉縞を重畳することで、フルカラーCGH を作成する手法が報告されている[3].この手法により作成されたフルカラーCGH は、非常に美しい像を再生するが、干渉縞の膜構造を形成するのに高度な技術が必要で、高解像度の CGH を作成するのは非常に困難である。他にも、空間光変調器(SLM)を用いた波面プリンタの開発に関する報告もある[4].しかし、現段階では高品質な 3D 映像を再生可能な体積型 CGH を作成するのは困難である.

作成が比較的容易で、手軽に展示可能なフルカラ ーCGH として、我々はカラーフィルタ方式フルカラ ー高解像度 CGH を報告している.しかし、リバーサ ルフィルムを用いて作成したカラーフィルタ[5]の 特性が悪く、再生像が暗くなるといった問題があっ た[6].そこで、ホログラムに適したカラーフィルタ を設計するための物理光学的シミュレーション手法 を報告している[7].しかしこれまで、実際のフルカ ラーCGH の作成とその光学再生像の報告は行われ ていなかった.

そこで本研究では、物理光学シミュレーションに 基づいて設計したフィルタを用いたフルカラー CGHを実際に作成し、その光学再生像を示す.

### 2. カラーフィルタ方式の原理

Fig.1 は、本研究で作成するカラーフィルタ方式フ ルカラーCGH の概要を図示したものである.この手 法では、Fig.2 に示す通り、干渉縞を RGB ブロック に空間分割し、RGB の色に対応した波長で物体光と 参照光を数値的に干渉させることで各ブロックの干



Fig.1 The principle of full-color reconstruction of high-definition CGHs using a color filter.

渉縞を発生させる.さらに、この干渉縞の各ブロックに対応する色のカラーフィルタを貼り合わせる. これに白色光を照射すると、カラーフィルタにより照明光の波長帯域が制限され、ブロック毎に各色の像が再生される.これらの再生像が重畳することでフルカラー再生像が得られる.

この様に干渉縞のピクセル単位ではなくブロック 単位でフィルタリングする理由は、干渉縞のピクセ ルピッチが 0.6~1.0 µm と高解像度であるのに対し て、カラーフィルタは一般に干渉縞より低解像度で、 ミクロンオーダの解像度のパターンを形成するのが 難しいためである.

本研究で提案するカラーフィルタ方式フルカラー CGH の層構造を Fig.3 に示す. 干渉縞はガラス基板 上のクロム膜で形成されており,高い反射率を有し ている.カラーフィルタは直接このクロム膜に接し て装着されている.ここで,Fig.2 と Fig.3 において, RGB ブロックの境界に図示されているガードギャ ップ(Guard-gap)は干渉縞が形成されていない領域で ある.干渉縞とカラーフィルタを貼り合わせる際に 生じる位置合わせ誤差の許容量を増加するために, 全てのブロック境界にガードギャップを設けている.

なお,提案方式の重要なポイントの一つとして, 再生照明光源としてマルチチップ方式の白色 LED を使用する点がある.この LED は,1つのパッケー ジ中に RGB3 色のチップが封入されており,蛍光体 を用いたシングルチップ方式白色 LED よりも狭帯 域の照明光を実現できる.カラーフィルタは一般的 に広帯域であるが,マルチチップ方式白色 LED を用



Fig.2 Blockwise color-filtering of the fringe pattern.



color high-definition CGHs.

いると色収差の少ない再生像が得られる.

# カラーフィルタ方式フルカラーCGH のシミュレ ーション再生手法

RGB 各色に対応した単一波長 $\lambda_p(p = R, G, B)$ で 計算した物体光と参照光をそれぞれ $O(x, y; \lambda_p)$ ,  $R(x, y; \lambda_p)$ とすると、2値の振幅型ホログラムの干渉 縞は

$$I(x, y) = \sum_{p=R,G,B} B\left\{ Re\left[OR^*(x, y; \lambda_p)\right] \right\}$$
(1)

で表される.ここで、B{}は2値化演算を表し、干 渉縞パターンI(x, y)の各画素値は0又は1である. なお、式(1)の総和記号は各波長の干渉縞を重畳する ことを意味するのではなく、ブロック毎に分割され た干渉縞を一つに統合することを意味している.ま た、ガードギャップは画素値0のパターンとして干 渉縞I(x, y)中に含まれている.

照明光 *L*(*x*, *y*; *λ*) でフルカラーCGH を照明すると, カラーフィルタ透過直後の再生光は近似的に

$$U(x, y; \lambda) = \mathbf{P}_{\mathrm{H,CF}} \left\{ \mathbf{P}_{\mathrm{CF,H}} \left\{ t_{CF}(\lambda) L(x, y; \lambda) \right\} \left( I(x, y) r_{Cr} + (1 - I(x, y)) r_{glass} \right) \right\} t_{CF}(\lambda) + r_{CF} L(x, y; \lambda)$$
(2)

で表されると考えられる.ここで、 $t_{cr}(\lambda)$ はカラー フィルタの透過率分布、 $\mathbf{P}_{CF,H}$ {}はカラーフィルタ表 面から干渉縞までの伝搬演算を表す.これは、カラ ーフィルタと干渉縞が完全には密着しておらず、わ ずかな隙間が生じていると仮定しているためである.  $\mathbf{P}_{H,CF}$ {}は逆伝搬演算を表している.また、 $r_{Cr}$ は Cr 膜の反射率であり、干渉縞I(x,y)における画素値 1 の部分に対応している. $r_{glass}$ はガラスの反射率で、 同様に画素値 0 の部分に対応している.カラーフィ ルタ表面の反射率は、 $r_{CF}$ で示される.これらは、波 長に依らず一定と仮定している.

照明光波長λに対する再生光波 U(x, y)から



Fig.4 Numerical image formation using virtual optics.

Fig.4 に示す仮想光学系による単色結像再生シミュ レーションを多数行うことで、単色シミュレーショ ン画像群を求める.これらの単色画像群を CIE XYZ 等色関数を用いて XYZ 表色系画像に変換し、最終 的に sRGB 画像へエンコードすることで、フルカラ ーシミュレーション再生画像を求めた.これらの一 連の過程を Fig.5 に示している.

### 4. 光学再生像

作成した CGH のパラメータとシーンを Table 1 と Fig.6 に示す. カラーフィルタの材料や膜厚の条件を 変え, シミュレーションを何度も繰り返した結果, Fig.7 の透過特性を持つカラーフィルタが最も適切 と判断し, これを採用した.

カラーフィルタ配列として,位置合わせが容易な 垂直ストライプパターンを用いた.これは,カラー フィルタ自体による回折光がストライプパターンと 直交する方向に生じるため,参照光位置を CGH の 下方にすると,水平ストライプではカラーフィルタ の回折光が再生物体と重なってしまうためである.

本研究で作成したフルカラーCGH の光学再生像 を Fig.8 に示す. (a)はカラーフィルタとして従来の リバーサルフィルムを用いた場合で,(b)は本手法を 用いて設計した Fig.7 のフィルタを用いた場合であ る. (a)の再生像はあまりにも暗く,通常の室内照明 下で展示するのは困難であるが,(b)ではより明るく 鮮明な再生像が得られることが確認できた.

## 5. まとめ

本研究では、カラーフィルタ方式フルカラーCGH に適したカラーフィルタを設計するためのシミュレ ーション手法を提案した.また、この手法で作成し たフルカラーCGHの光学再生像を報告し、カラーフ ィルタ方式フルカラーCGH が高品質で明るい立体



Fig.5 Calculation process of full-color images from monochromatic reconstruction images.

像を再生可能であることを示した.

# 6. 謝辞

本研究は日本学術振興会の科研費(15K00512),お よび文部科学省私立大学戦略基盤研究形成支援事業 (平成25年~平成29年)の助成を受けたものである.

## 参考文献

- K. Matsushima, S. Nakahara: "Extremely highdefinition full-parallax computer-generated hologram created by the polygon-based method," Appl. Opt. 48, H54-H63 (2009).
- [2] T. Miyaoka, K. Matsushima, S. Nakahara: "Optimization of design-wavelength for unobtrusive chromatic aberration in high-definition color computer holography", SPIE Proc. **9386**, 93860N (2015).
- [3] T. Kämpfe, E. Kley, A. Tunnermann, P. Dannberg: "Design and fabrication of stacked CGH for multicolor image generation", Appl. Opt. 46, 5482-5488 (2007).
- [4] Y. Kim, E. Stoykova, H. Kang, S. Hong, J. Park, J. Park, J. Hong: "Seamless full color holographic printing method based on spatial partitioning of SLM," Opt. Express 23, 172-182 (2015).
- [5] S. Iwami, Y. Sakamoto: "A study of glasses-type color CGH using a color filter considering reduction of burring," SPIE Proc. 7233, 723317 (2009).
- [6] 土山,松島,中原,坂本:"カラーフィルタ方式 によるフルカラー高解像度計算機合成ホログ ラムの作成,"3次元画像コンファレンス 2015, 3-4 (2015).
- [7] Y. Tsuchiyama, K. Matsushima, S. Nakahara, Y. Sakamoto: "A Simulation technique for selection of color filter used for full-color high-definition CGH," IWH2015, Th2-4 (2015).



(a) Conventional CGH

 Table 1 Parameters used for creating the full-color test CGH.

| Number of pixels  | 65,536 × 65,536                          |  |  |
|-------------------|------------------------------------------|--|--|
| Pixel pitches     | $0.8~\mu m \times 0.8~\mu m$             |  |  |
| Sizes of CGHs     | $52.4 \text{ mm} \times 52.4 \text{ mm}$ |  |  |
| Design Wavelength | 630 nm, 520 nm, 460 nm                   |  |  |
| RGB stripe width  | 60 µm                                    |  |  |
| Guard-gap width   | 20 µm                                    |  |  |



Fig.6 The 3D scene of the full-color high-definition CGH.



Fig.7 Spectra of RGB illumination light transmitted through the color filter. The intensities are normalize to unity.



(b) This work

Fig.8 Optical reconstructions of full-color high-definition CGHs with conventional color filter made of a reversal film (a) and the designed color filter (b).