高解像度 CGH のフルカラー再生のための 色収差低減手法 A Reduction Technique of Chromatic Aberration for Creating High-Definition Full-Color CGH

宮岡貴史¹ 松島恭治¹ 中原住雄² Takasi Miyaoka¹ Kyoji Matsushima¹ Sumio Nakahara² ¹関西大学 システム理工学部 電気電子情報工学科 ¹Department of Electrical and Electronic Engineering, Kansai University ²関西大学 システム理工学部 機械工学科 ²Department of Mechanical Engineering, Kansai University

ABSTRACT

Optical reconstruction of the high-definition computer-generated hologram (HD-CGH) created by computer holography is being comparable with that by conventional optical holography. However, HD-CGHs require monochromatic illumination for reconstruction, and the optical reconstruction is a monochromatic image. In this research, a new technique is proposed for full-color reconstruction of HD-CGHs with reduced chromatic aberration. In this technique, three illumination lights are produced by using a white LED and three conventional color filters for RGB color. Thus, each illumination light is not monochromatic but has broad spectrum. Full-color 3D images are produced by overlapping optical reconstructions of three HD-CGHs illuminated by the produced RGB lights. In this case, the color aberration varies dependently on the wavelength adopted for computation of the HD-CGHs. Three methods for determining the wavelength are examined by a technique of full-color simulated reconstruction. As a result, it was verified that one of them is useful for reducing chromatic aberration. An actual HD-CGH created by the proposed technique is demonstrated to confirm the validity.

Keywords: 計算機合成ホログラム,カラー再生,白色光再生

1. はじめに

近年,計算機の性能やレンダリングアルゴリズム, 微細加工技術の発達により,コンピュータホログラ フィで光学ホログラフィに匹敵する再生像が得られ

宫岡貴史

<miyaoka@laser.ee.kansai-u.ac.jp> 関西大学システム理工学部電気電子情報工学科 〒564-8680 大阪府吹田市山手町3-3-35 TEL 06-6368-1121(内線 5722) るようになってきた[1-3]. しかしこれにより作成さ れる高解像度計算機合成ホログラム(High-Definition Computer-Generated Hologram: HD-CGH)の共通の問 題として再生には単色光源が必要であり,再生像も 単色となる点がある.しかし,HD-CGHをサイネー ジ等へ応用することを考えた場合,HD-CGHのカラ ー化は必ず必要である.

CGH をフルカラーで再生するためには,3原色の 再生照明光源で3枚のCGH を再生しその再生像を 正確に重ね合わせる必要がある.しかし,その場合 3 色の光源を用意する必要があり,再生光学系が複 雑になってしまう.そのため,一つの光源で CGH がフルカラー再生出来ることが望ましい.またもっ ともシャープな再生像が得られる再生照明光源はレ ーザー光源であるが,非回折光を直視すると危険で あるため,展示などの際には安全基準に厳密に準拠 する必要が生じる.

そこで本研究では、単一の白色光 LED の光をカ ラーフィルターに通すことで3 原色の照明光源を作 成し、3 枚の CGH を再生することで高解像度 CGH のフルカラー再生を試みた.この時、カラーフィル ター透過後の光は単一波長とはならず、かなり広い 波長帯域幅を有する照明光となる.そのため各色用 の CGH の再生像には、照明光スペクトルに応じた 色収差が発生してしまう.また、CGH の数値合成計 算では単一の波長(以下,設計波長)を仮定するため、 照明光にあらかじめ帯域幅があることが分かってい る場合,設計波長をどのように選ぶかが問題となる.

本研究では、この設計波長の選択によっては色収 差によるフルカラー再生像のずれを低減できること を示し、最適な設計波長の決定方法を検討した結果 を報告する.また提案する手法を用いて実際に高解 像度フルカラーCGHを作成し、そのカラー再生像を 示す.

- 2. 白色 LED とカラーフィルターを用いた高解像
 度 CGH のフルカラー再生
- 2.1 フルカラー再生光学系

本研究で用いるフルカラーCGH 再生光学系を

Fig.1 Experimental setup for full-color reconstruction of HD-CGHs

Fig.1 に示す.光源として用いる白色 LED の光を3 つに分けそれぞれの光を市販の赤,緑,青のカラー フィルターに通すことで3 原色の再生照明光を一つ の光源で作り、3 枚の CGH を照明し再生する.その 再生光は、透過または反射して光路を逆行するため 3 色の再生像が重なり、これによって観察者はフル カラー再生像を見ることができる.

なおビームスプリッタの鏡面反射により赤と緑の 再生像が左右反転して見えてしまうため、赤と緑の CGH は干渉縞を左右反転して作成している.また再 生光学系の赤色アームにビームスプリッタ3を設置 しているのは、ビームスプリッタによるそれぞれの 減光量を同一にするためである.

2.2 再生照明光のスペクトル

本研究で用いた白色光 LED の相対発光スペクト ルと市販の赤,緑,青のカラーフィルターの透過率 の波長依存性を Fig.2 に示す.このように各カラー フィルターはある程度広い透過帯域幅を持っている. また,白色 LED の発光スペクトルも均一でなく,そ の強度は波長によって大きく変化している.実際の

Fig.2 Spectra of the white LED and RGB color filters used for full-color reconstruction.

Fig.3 Estimated spectra of RGB illumination light for each HD-CGH

再生照明光スペクトルは, 白色 LED の発光スペクト ルに各カラーフィルターの透過率を乗算した値とな っている. 白色 LED の光が赤, 緑, 青のカラーフィ ルターを透過した後のスペクトルを Fig.3 に示す. 本研究では, この 3 色のスペクトルの光を 3 枚の CGH の再生照明光としてシミュレーションを行っ ている.

2.3 設計波長の決定手法

各色の照明光がそれぞれ広いスペクトルを有する ため、それぞれの再生像に色収差が発生し、3 色の CGH を重ねて見ても再生像が正確に重ならなくな ってしまう.そこで像のずれを軽減するため、CGH の設計波長決定法として次の4つの手法を試みた.

(1) 照明光の波長帯域の中心波長

- (2) 照明光スペクトルの積分値を等分する波長
- (3) 照明光スペクトルのピーク波長
- (4) よく用いられるレーザーの波長

手法(1)-(3)についてはFig.3のスペクトルから求めた. なお,(4)は無思慮に波長を決めた場合を想定した比 較対照用である.

2.4 3 原色用 CGH の計算

再生実験は白色ワイヤーフレームモデル(点光源 法)とカラーポリゴンモデル(ポリゴン法)で行った. ポリゴンモデルの場合,マッピングしたいカラーテ クスチャ画像を色分解したグレースケール画像を用 意し,設計波長 λ_r , λ_g , λ_b でそれぞれ物体光波計 算を行ない,同じ波長の参照光と数値的に干渉して 振幅 2 値にコーディングした.なお 2.1 節で述べた 通り緑と赤の CGH では干渉縞を左右反転している.

2.5 カラーシミュレーション再生像の計算手順

カラー再生像のシミュレーションを行うための手 順を Fig.4 に示す.まず Fig.3 の各色のスペクトルを 10nm 間隔で標本化し,一つ一つの波長毎に波動光 学的シミュレーション再生像を求める[4].例えば赤 用 CGH では N,点に離散化した赤照明光のスペクト ルの標本波長毎にその相対強度の照明光を照射した 場合の再生像を N,個求める.緑と青の CGH につい てもこれを行い,得られたすべての再生像(光強度 像)のピクセルごとに等色関数を用いてカラー値を 計算することでカラーシミュレーション再生像を求

Fig.4 The procedure for simulated reconstruction of full-color CGHs

めた.

3. 設計波長検証用 CGH とその結果

設計波長の違いによる色収差を調べるために用 いた CGHの 3D シーンとパラメータを Fig.5 と Table 1 に示す.物体モデルとしては一辺 12[mm]のワイヤ ーフレームモデルの立方体を4 つ用い,立方体の中 心の奥行き位置を 100[mm]で一定としている.また CGHの中心を貫くz軸上に球面波参照光源の中心を 置くことで,参照光源と4 つの立方体の距離による 色収差の違いを無くしている.この4 つの立方体の 干渉縞を Table 2 に示した設計波長を用いて計算し, Fig.5 に示す通り,ひとつの CGH を4 分割してそれ ぞれの象限に設計波長の異なる4 つの干渉縞を作成 している.

2 節のカラー再生シミュレーションを用いて得ら れたシミュレーション再生像を Fig.6 に示す.この 結果から右上の手法(2)の設計波長による立方体が 最も色収差によるずれが少なく,白色のワイヤフレ ームが再生されていることがわかる.同じ干渉縞パ ターンで光リソグラフィを用いて実際に作製した HD-CGH を Fig.1 の光学系で再生した光学再生像の 写真を Fig.7 に示す.シミュレーションとほぼ同じ 結果が得られていることがわかる.

|--|

Number of pixels	65,536×65,536
Pixel pitches	0.8µm×0.8µm
Sizes of CGH	$52.4 \times 52.4 \text{mm}^2$
Center of spherical reference field	(0,0,-400)mm

	Wavelength [nm]		
	Red	Green	Blue
Method (1)	637	538	457
Method (2)	620	545	455
Method (3)	600	565	450
Method (4)	632.	532	488
Reference		100 y	_
light			$\begin{array}{c} 2 \\ 2 \\ 4 \\ 4 \\ \end{array}$

Table 2 The wavelength used for computing CGHs

Fig.5 3D scene of the test CGH

4. フルカラーCGH "Rubik's cube"

Units:mm

フルカラーポリゴンモデルの HD-CGH として, "Rubik's cube"と名付けた CGH を計算した. その 3D シーンとパラメータを Fig.8 と Table 3 に示す. Fig.8 左下は用いたテクスチャ画像である. この CGH の 設計波長としては前節の結果から手法(2)の波長を 用いている.

カラーシミュレーション再生像を Fig.9 に示す. この結果から色ずれの少ないフルカラーの再生像が 得られることが分かった.

5. まとめ

本研究では,設計波長としてスペクトル積分値を 等分する波長を用いることで色収差による位置ずれ を軽減できることを示した.この手法の設計波長を 用いて色収差の少ないポリゴンモデル高解像度フル カラーCGHを作成できることを確認した.

Table 3 Parameters used for creating Rubik's Cube.		
Number of pixels	65,536×65,536	
Pixel pitches	1.0μm×1.0μm	
Sizes of CGH	$65.5 \times 65.5 \text{mm}^2$	
Reference light position	(0, -30, -400)mm	

Fig.8 3D scene of the full-color HD-CGH name "Rubik's Cube"

6. 謝辞

研究は、日本学術振興会の科研費(24500133),お よび平成23年度関西大学学術研究助成金(共同研究) の助成を受けたものである.

参考文献

- K. Matsushima, S. Nakahara: "Extremely High-Definition Full-Parallax Computer-Generated Hologram Created by the Polygon-Based Method", Appl. Opt. 48, H54-H63 (2009).
- [2] H. Nishi, K. Matsushima, S. Nakahara: "Rendering of specular surfaces in polygon-based computer-generated holograms", Appl. Opt. 50, H245-H252(2011)
- [3] K. Matsushima, H. Nishi, S. Nakahara: "Simple wave-field rendering for photorealistic reconstruction in polygon-based high-definition computer holography", J. Electron. Imaging 21, 023002 (2012).
- [4] 村上,松島: "数値的レンズ結像を用いた全方向 視差計算機合成ホログラムの波動光学的再生 シミュレーション",映像情報メディア学会誌 65,12,1793-1800 (2011)

Fig.6 Simulated reconstruction of the test CGH

Fig.7 Optical reconstruction of the test CGH

Fig.9 Simulated reconstruction of Rubik's Cube