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Rotational transformation based on coordinate rotation in Fourier space is a useful technique for simulat-
ing wave field propagation between nonparallel planes. This technique is characterized by fast computa-
tion because the transformation only requires executing a fast Fourier transform twice and a single
interpolation. It is proved that the formula of the rotational transformation mathematically satisfies
the Helmholtz equation. Moreover, to verify the formulation and its usefulness in wave optics, it is also
demonstrated that the transformation makes it possible to reconstruct an image on arbitrarily tilted
planes from a wave field captured experimentally by using digital holography. © 2008 Optical Society
of America
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1. Introduction

Simulation in wave optics has become increasingly
more importantbecauseof theevolutionofmodernop-
tical technologies such as diffractive optical elements
and digital holography. In these technologies, exact
and fast simulation techniques are alwaysdemanded,
especially for free space propagation. There are
various formulations for spatial propagation or dif-
fraction of coherent wave fields in a free space,
including such well-known formulas as the Fresnel–
Kirchhoff integral or Fresnel and Fraunhofer diffrac-
tion. However, these share a common restriction: the
reference screen must be parallel to the source plane
inwhich thewave field is initially given.Formulations
basedoncoordinate rotation inFourier space [1,2] and
the Rayleigh–Sommerfeld integral [3] have been pre-
sented for removing this restriction. A similar formu-
lation based on the Fresnel approximation is also
reported for numerical reconstruction in digital
holography [4].
Recently, the author and colleagues presented an-

other formulation for propagation between nonparal-

lel planes [5]. This formula, referred to as rotational
transformation, features exact and fast simulation.
Since this is a useful technique, applications using
the presented formula have been reported for creat-
ing surface objects [6] and hidden-surface removal [7]
in computer-generated holograms and for the numer-
ical reconstruction of digital holograms [8]. However,
slight doubts regarding the mathematical reliability
of the formula have not been dispelled, because the
derivation in [5] is based on the physical interpreta-
tion of the angular spectrum of plane waves.

I aim to provide a brief proof that the formula rig-
orously satisfies the Helmholtz equation and that
there are no approximations included in the formu-
lation. Another aim is to demonstrate the application
of rotational transformation to digital holography.
Evolution of computer technology is realizing various
possibilities for digital signal processing of light. Di-
gital signal processing makes it possible to process
light wave fields in a manner that is difficult or im-
possible to accomplish by using conventional optical
components. Digital holography is a critical technol-
ogy for acquisition of wave fields in digital signal pro-
cessing of light. For example, De Nicola et al. used
digital holography and reported correct image recon-
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struction under conditions of severe anamorphism
[9]. They also reported numerical reconstruction of
images on tilted planes [8] using digital holography
and rotational transformation based on the formula-
tion presented in an earlier paper of ours [5]. How-
ever, the results reported by De Nicola et al. are of
holographic microscopy for an object with dimen-
sions of several micrometers. In this paper, recon-
struction of a large object with dimensions of
4 cm × 1 cm is demonstrated for experimental verifi-
cation of rotational transformation.

2. Formulation of Rotational Transformation

A. Coordinate Systems and Rotation Matrices

Twocoordinatesystemsaredefinedasshown inFig.1.
One of the coordinate sets is referred to as the source
coordinate ðx; y; zÞ. Awave field is initially given in the
plane ðx; y; 0Þ of the source coordinates. This plane is
referred to as the source plane. The reference coordi-
natesðx̂; ŷ; ẑÞarethesecondsetofcoordinates, inwhich
awave field is calculated by rotational transformation
in theplane ðx̂; ŷ; 0Þ, referred to as the reference plane.
Both coordinate systems share the origin and are not
parallel to each other.
Position vectors r ¼ ðx; y; zÞ and r̂ ¼ ðx̂; ŷ; ẑÞ can be

mutually transformed by the transformation matrix
T as follows:

r̂ ¼ Tr; ð1Þ

r ¼ T−1r̂: ð2Þ

The matrix T is, in general, given as a rotation ma-
trix RξðθξÞ or the product of several rotation matrices
as follows:

T ¼ RξðθξÞ…RηðθηÞ; ð3Þ

where ξ and η denote axes x, y, or z and θξ and θη are
the angles of rotation around the axes ξ and η, respec-
tively. Individual rotation matrices are shown in
Table 1. These commonly possess the following char-
acteristics:

R−1
ξ ðθξÞ ¼ Rξð−θξÞ ¼ tRξðθξÞ; ð4Þ

where R−1
ξ ðθξÞ and tRξðθξÞ are the inverse and trans-

posed matrix of a rotation matrix, respectively.
As a result, the inverse matrix of any transforma-

tion matrix defined by the product of individual rota-
tion matrices in Eq. (3) is generally given by

T−1 ¼ tT: ð5Þ

Therefore, the generalized transformationmatrix be-
low is used in formulations as follows:

T−1 ¼
2
4a1 a2 a3

a4 a5 a6

a7 a8 a9

3
5; ð6Þ

T ¼
2
4a1 a4 a7

a2 a5 a8

a3 a6 a9

3
5: ð7Þ

B. Rotational Transformation

When awave field f ðx; y; 0Þwithwavelength λ is given
in the source plane, the source field at arbitrary posi-
tions is given by [10]

f ðx; y; zÞ ¼
Z Z þ∞

−∞

Fðu; vÞ exp½i2πfuxþ vy

þ ðλ−2 − u2 − v2Þ1=2zg�dudv
¼ F−1fFðu; vÞ exp½i2πwðu; vÞzg; ð8Þ

wðu; vÞ ¼ ðλ−2 − u2 − v2Þ1=2; ð9Þ

where Fðu; vÞ and ½u; v;wðu; vÞ� are the Fourier spec-
trum of f ðx; y; 0Þ and Fourier frequencies for ðx; y; zÞ,
respectively. Note that the wave field f ðx; y; zÞ repre-
sented in Eq. (8) rigorously satisfies the Helmholtz
equation.

The wave field in the reference plane f̂ ðx̂; ŷ; ẑ ¼ 0Þ
is given by substituting Eq. (2) and T−1 of Eq. (6) into
Eq. (8) as follows:

f̂ ðx̂; ŷ; 0Þ ¼ f ða1x̂þ a2ŷ;a4x̂þ a5ŷ; a7x̂þ a8ŷÞ

¼
Z Z

Fðu; vÞ exp½fi2π½ða1uþ a4vþ a7wÞx̂

þ ða2uþ a5vþ a8wÞŷ�g�dudv; ð10Þ

where the abbreviation w ¼ wðu; vÞ is used.
When Fourier frequencies û, v̂, and ŵ ¼ ŵðû; v̂Þ ¼

ðλ−2 − û2 − v̂2Þ1=2 are defined with respect to x̂, ŷ, and
ẑ, the vectors f ¼ ðu; v;wÞ and f̂ ¼ ðû; v̂; ŵÞ in the
Fourier space are transformed into each other by
the same transformation matrices T and T−1 as in
real space. Therefore, by using the transform
f̂ ¼ Tf, the exponent in Eq. (10) can be reduced to
i2πðûx̂þ v̂ŷÞ, and the wave field in the referenceFig. 1. Definition of the coordinate systems and their rotation.
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plane is given as

f̂ ðx̂; ŷ; 0Þ ¼
Z Z

Fðαðû; v̂Þ; βðû; v̂ÞÞ

× exp½i2πðûx̂þ v̂ŷÞ�dudv; ð11Þ

where arguments u and v of spectrum Fðu; vÞ in
Eq. (10) are rewritten by using f ¼ T−1 f̂ as follows:

u ¼ αðû; v̂Þ≡ a1ûþ a2v̂þ a3ŵðû; v̂Þ;
v ¼ βðû; v̂Þ≡ a4ûþ a5v̂þ a6ŵðû; v̂Þ: ð12Þ

Changing from variables u, v to û, v̂ in the integration
of Eq. (11) can be achieved by substituting dudv ¼
jJðû; v̂Þjdûdv̂ and the Jacobian obtained by

Jðû; v̂Þ ¼ ∂α
∂ û

∂β
∂ v̂

−
∂α
∂ v̂

∂β
∂ û

: ð13Þ

As a result, rotational transformation of the wave
fields is formulated as follows:

f̂ ðx̂; ŷ; 0Þ ¼
Z Z

F̂ðû; v̂Þ exp½i2πðûx̂þ v̂ŷÞ�dûdv̂

¼ F−1fF̂ðû; v̂Þg; ð14Þ

F̂ðû; v̂Þ ¼ Fða1ûþ a2v̂þ a3ŵðû; v̂Þ;a4ûþ a5v̂

þ a6ŵðû; v̂ÞÞjJðû; v̂Þj; ð15Þ

Jðû; v̂Þ ¼ ða2a6 − a3a5Þû
ŵðû; v̂Þ þ ða3a4 − a1a6Þv̂

ŵðû; v̂Þ
þ ða1a5 − a2a4Þ: ð16Þ

The Jacobian approximates a constant and therefore
can be ignored in cases where the field is paraxial in
the source or reference coordinates [5]. It is worth
emphasizing that f̂ ðx̂; ŷ; 0Þ given by Eqs. (14)–(16)
is a complete solution of the Helmholtz equation.
In addition, only a double Fourier transform is
needed to perform this transformation.

C. Resampling Fourier Spectrum

Since fast Fourier transforms (FFTs) are commonly
used for numerical calculation, the source spectrum
Fðu; vÞ is sampled in a square area, and the center of
the sampling area is the origin of the Fourier space,
as shown in Fig. 2(a). However, as shown in 2(b), the

origin in the source Fourier space ðu; vÞ is projected to
ðû0; v̂0Þ ¼ ða7λ−1;a8λ−1Þ in the reference Fourier space
by the transform f̂ ¼ Tf. Therefore, the second FFT
required in Eq. (14) does not work effectively because
the spectrum is sampled far from the origin. To use
FFTs for numerical calculation, shifted Fourier space
ð~u; ~vÞ ¼ ðû − û0; v̂ − v̂0Þ should be introduced in order
to cancel these undesired offsets. When using these
shifted Fourier frequencies, the spectrum in the re-
ference plane is rewritten as

F̂ðû; v̂Þ ¼ F̂ð~uþ û0; ~vþ v̂0Þ ¼ ~Fð~u; ~vÞ: ð17Þ

An example of a sampling area in the shifted refer-
ence space is shown in Fig. 2(c).

Let us invert the procedure. Suppose that the spec-
trum ~Fð~u; ~vÞ issampledinasquareareacenteredinthe
shiftedFourierspace,asshowninFig.2(f), theoriginof
ð~u; ~vÞ agrees with the center of the spectrum ðû; v̂Þ ¼
ðû0; v̂0Þ in the reference Fourier space, as shown in
2(e), and the origin in the source Fourier space, in
2(d).Thesamplingpointð~u; ~vÞ isprojectedtothesource
Fourier space ðu; vÞ as follows:

u ¼ αð~uþ û0; ~vþ v̂0Þ; ð18Þ

Table 1. Rotation Matrices

RxðθxÞ ¼

0
B@

1 0 0
0 cos θx sin θx
0 − sin θx cos θx

1
CA; RyðθyÞ ¼

0
B@

cos θy 0 − sin θy
0 1 0

sin θy 0 cos θy

1
CA; RzðθzÞ ¼

0
B@

cos θz sin θz 0
− sin θz cos θz 0

0 0 1

1
CA

Fig. 2. Example of sampling areas in three Fourier spaces: (a), (d)
source, (b), (e) reference, and (c), (f) shifted reference Fourier
spaces. The left-hand column (a)–(c) is the case of a spectrum
sampled in an equidistant grid within the square area in the
source space, whereas the right-hand column (d)–(f) is for equidi-
stant and square sampling in a shifted reference space. This exam-
ple is for T ¼ Rxð20°ÞRyð30°Þ.

D112 APPLIED OPTICS / Vol. 47, No. 19 / 1 July 2008



v ¼ βð~uþ û0; ~vþ v̂0Þ: ð19Þ
When both ~Fð~u; ~vÞ and Fðu; vÞ are sampled in equidi-
stant sampling grids, the sampling points in the
sampled spectrum Fðu; vÞ generally do not agree with
thesamplingpoints in ~Fð~u; ~vÞbecauseof thedistortion
of the sampling grid caused by the projection in
Eqs. (18) and (19). As a result, an interpolation is ne-
cessary for resampling ~Fð~u; ~vÞ from Fðu; vÞ.
The inverse Fourier transform of Eq. (17) as to ~u, ~v

is given by using the shift theorem as

F−1f~Fð~u; ~vÞg ¼ F−1fF̂ð~uþ û0; ~vþ v̂0Þg
¼ F−1fF̂ð~u; ~vÞg exp½−i2πðû0x̂þ v̂0ŷÞ�:

ð20Þ
Since the inverse Fourier transform of F̂ðû; v̂Þ as to û,
v̂ is identical to that of F̂ð~u; ~vÞ as to ~u, ~v, we can re-
write Eq. (14) as

f̂ ðx̂; ŷ; 0Þ ¼ F−1f~Fð~u; ~vÞg exp½i2πðû0x̂þ v̂0ŷÞ�: ð21Þ
In the case of a slight tilting of the source plane, the
Fourier spectrum in the reference plane can be ap-
proximated to the source one, i.e., ~Fð~u; ~vÞ ≈ Fðu; vÞ;
therefore, f̂ ðx̂; ŷ; 0Þ ≈ f ðx; y; 0Þ exp½i2πðû0x̂þ v̂0ŷÞ� is a
good approximation. This agrees with the theoretical
method providing analysis of the effect of the slight
tilting motion of object surfaces [11].
In summary, the spectrum Fðu; vÞ of the source

wave field is first calculated by using a FFT in the
numerical implementation of the theory presented
here. Next, the spectrum ~Fð~u; ~vÞ is resampled from
Fðu; vÞ by using an interpolation as follows:

~Fð~u; ~vÞ ≅ Fðαð~uþ û0; ~vþ v̂0Þ; βð~uþ û0; ~vþ v̂0ÞÞ
jJð~uþ û0; ~vþ v̂0Þj: ð22Þ

Finally, the wave field in the reference coordinates is
obtained by inverse FFT in Eq. (21).

3. Application of Rotational Transformation to Digital
Holography

To verify the above formulation of the rotational
transformation, an attempt to reconstruct clear
images of the pattern printed on a tilted plane was
performed by using digital holography. As shown
in Fig. 3, the wave field emitted from the planar ob-
ject, on which some letters are printed, was captured
on the image sensor by using phase-shifting digital
holography. The printed pattern (letters) covering
an area of 4 cm × 1 cm is shown in Fig. 4.

A. Experimental Setup

The wave field from the tilted planar object was cap-
tured by using the aliasing-free zone [12] in phase-
shifting lensless Fourier digital holography. This is
because the object is large compared with those used
in holographic microscopy [8]. The aliasing-free zone

is a virtual zone in the shape of a quadrangular pyr-
amid in the object space, as shown in Fig. 5. An object
wave emitted from any object placed within the zone
can be recorded without any aliasing error. The
shape of the aliasing-free zone is obtained from an
estimation of the maximum spatial frequency on
the sensor surface and is presented as the relation-
ship between the object width w and the object dis-
tance d from the image sensor, as follows [12]:

w ≤
4λdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16δ2 − λ2
p ; ð23Þ

where δ is the sensor pitch. We can minimize the ob-
ject distance and maximize the object size by using
the aliasing-free zone. As a result, the angle of the
visual field can be maximized to the limit imposed
by the sensor pitch.

The experimental setup for capturing the wave
field by the phase-shifting lensless Fourier digital ho-
lography is shown in Fig 6. The planar object illumi-
nated with coherent light (λ ¼ 532nm) is slanted at
approximately 70° around the y axis, and the dis-
tance between the center of the object and the image
sensor is approximately 19:5 cm. The piezo phase
shifter is inserted into the reference path to change
the phase of the reference field. Furthermore, the
spatial filter forms the reference field into a spherical
wave. A CMOS-type high-resolution image sensor
with sensor pitches of 6:0 μm× 6:0 μm is used to cap-
ture the fringe pattern. The number of pixels of the
image sensor is 2000 × 2000 pixels.

B. Numerical Reconstruction by Rotational Transformation

A schematic procedure for reconstructing a pattern
on a tilted planar object is shown in Fig. 7. The com-
plex image gðx0; y0Þwas composed from four different

Fig. 3. Schematics for capturing the wave field from a tilted
plane.

Fig. 4. (Color online) Photograph of the pattern printed on the
planar object.
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phase-shifting fringe patterns captured by the image
sensor [13]. The wave field f 0ðx; y; z0 ¼ −zRÞ was ob-
tained in the plane parallel to the image sensor by
using a Fourier transform as follows:

f 0ðx; y; z0 ¼ −zRÞ ¼ Ffgðx0; y0Þgu¼−x=λzR;v¼−y=λzR ; ð24Þ

where the origin of z0 is on the sensor surface and zR
is the distance between the sensor surface and the
pinhole of the spatial filter inserted into the refer-
ence path, as shown in Fig. 6.
A close-up photograph of the tilted planar object

captured by an ordinary lens camera is shown in
Fig. 8(a). Similar images can be obtained as the am-
plitude image jf 0ðx; y;−zRÞj, as shown in Fig. 8(b). In
this amplitude image, the number of samplings and
sampling pitches have changed from that of the im-
age sensor because of the Fourier transform in
Eq. (24). These are 2048 × 2048 pixels and 8:1 μm×
8:1 μm in Fig. 8(b), respectively.
We cannot obtain clear images in both results in

Fig. 8 because of the depth of focus. Rotational trans-
formation should be used to produce a clear image on
the surface of the planar object. However, if the cen-
ter of the sampled wave field f 0ðx; y;−zRÞ does not co-
incide with the surface of the planar object exactly,
we cannot obtain a clear image, because rotational
transformation yields the wave field rotated on the
center of the sampling area. Therefore, the field
f 0ðx; y;−zRÞ must be propagated to the position z0 ¼
−zR−Δz numerically so that the center of the field
is exactly placed on the surface of the planar object,

as shown in Fig. 7. We can use any method for this
propagation. In this paper, the angular spectrum of
the plane wave in Eq. (8) is used for this numerical
propagation.

The wave field f 0ðx; y;−zR−ΔzÞ is the starting
point of rotational transformation, i.e., f ðx; y; 0Þ ¼
f 0ðx; y;−zR−ΔzÞ, and transformation matrix T ¼
RyðθyÞ was used in the calculation. First, the spec-
trum Fðu; vÞ is calculated by using an FFT. Next,
the spectrum in the shifted reference Fourier space
~Fð~u; ~vÞ is obtained by resampling Fðu; vÞ, using
Eq. (22). Since the complex value of the spectrum
F½αð~um þ û0; ~vn þ v̂0Þ; βð~um þ û0; ~vn þ v̂0Þ�must be ob-
tained for each sampling point ð~um; ~vnÞ on the equi-
distant sampling grid, interpolation is needed
because of the nonlinearity attributed to Eq. (12).

Finally, we can calculate the wave field in the refer-
ence plane by use of Eq. (21). Since the purpose of this
experiment is to calculate only the amplitude image,
thephase factor inEq. (21) canbe ignored; i.e., theFFT
is performed only in ~Fð~u; ~vÞ. The amplitude image
j f̂ ðx̂; ŷ; 0Þj after the rotational transformation at θy ¼
71:8° is shown in Fig. 9. The whole pattern on the sur-
face of the tilted planar object appears clearly when
compared with the results in Fig. 8.

The case of two-axis rotation is shown in Fig. 10.
The planar object is slanted at 30° around the y axis
after rotation at −60° around the x axis. Therefore
the transformation matrix T ¼ Ryð30°ÞRxð−60°Þ is
used to retrieve the original pattern.

4. Discussion

In this paper rotational transformation is used to re-
trieve the original pattern printed on tilted planes. In
some cases, however, the inverse problem could be
more interesting. Figure 11 shows the case of tilting
the image sensor; i.e., the sensor surface is not per-
pendicular to the normal line of the object surface.
Even in this case, distortion of the captured field
is most likely compensated by the rotational trans-

Fig. 5. Schematic illustration of an aliasing-free zone.

Fig. 6. Experimental setup for recording phase-shifting lensless
Fourier digital holograms: L, lens; M, mirror; BS, beam splitter;
SF, spatial filter.

Fig. 7. Procedure for numerical reconstruction of images on the
planar object from the complex image captured on the image
sensor.

Fig. 8. (Color online) (a) Close-up photograph of the object and (b)
the amplitude image jf 0ðx; y;−zRÞj numerically reconstructed in the
plane parallel to the image sensor.
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formation. The sequence of the numerical recon-
struction is, however, different from the object rota-
tion shown in Fig. 7. Assuming that the wave field
f ðx; y; 0Þ on the sensor surface is captured by some
type of digital holography, the wave field must be ro-
tationally transformed prior to translational propa-
gation. Once the field f̂ ðx̂; ŷ; 0Þ is obtained in a
plane parallel to the object surface, the wave field
f̂ ðx̂; ŷ;−ΔzÞ can be reconstructed by using ordinary
digital holography methods.
Reconstruction of the surface pattern of a slanted

opaque object is adopted for experimental verification
of the rotational transformation formulated in this
paper. However, numerical reconstruction of trans-
parent objects by using rotational transformation
may be interesting for some biological applications.
A conceptual illustration in such a case is shown in
Fig. 12. When the object wave of a specimen with
sparse contents or a slight change of refractive index
is captured by digital holography, we can reconstruct
tomographic images in planes parallel to the sensor
by ordinary techniques. Rotational transformation
makes it possible to reconstruct tomographic images
in any plane in the object space. The reconstruction
plane is no longer limited to the parallel ones. Aswell,
the computational complexity of the rotational trans-
formation is only a double FFT and an interpolation.
Therefore, computation time is almost the same as
that for reconstruction in a parallel plane.

5. Conclusion

In conclusion, I proved that the rotational transfor-
mation formula presented in [5] satisfies the Helm-
holtz equation and therefore gives an exact spatial
solution of the wave equation. This rotational trans-

formation has the advantage of easy implementation
and fast computation for numerical calculations be-
cause the transformation can be performed by just a
double FFT and an interpolation.

As rotational transformation is useful for wave op-
tics, especially for digital holography, its formulation
and usefulness were verified by demonstrating that
images in tilted planes can be clearly reconstructed
from the wave field captured by phase-shifting lens-
less Fourier digital holography.

The author thanks T. Nakatsuji for his assistance
with the experiments.
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