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Abstract: Rotational transformation allows the reconstruction of images on an arbitrarily 
tilted plane in a digital holography and the creation of arbitrarily tilted polygon light sources 
in CGHs. Examples of transformation applications are demonstrated. 
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1. Introduction 

There are various formulations for spatial propagation or the diffraction of coherent light waves in a free space, 
including such well-known formulas as Fresnel-Kirchhoff integral, Rayleigh-Sommerfeld integral, and Fresnel and 
Fraunhofer diffraction. However, these share a common restriction: the reference screen in which light fields are 
obtained as a result of propagation must be parallel to the source plane in which the boundary condition is given. 
Recently, we reported another formulation for the spatial propagation of light 
from a source plane to a reference plane [1]. The reference plane is allowed to be 
arbitrarily tilted to the source plane. We refer to this formula as rotational 
transformation, which is a useful technique in every field of optical engineering, 
especially in digital holography and computer-generated holograms (CGH).  x
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A technique of point sources of light is often used to calculate object fields 
emitted from virtual objects in CGHs for display purposes. This technique is 
very simple but time-consuming because a gigantic number of point sources 
must be handled to create an object with a certain dimension. Rotational 
transformation provides another technique: polygon sources of light instead of 
point sources [2]. The transformation also solves the hidden-surface removal 
problem of full-parallax CGHs [3]. Furthermore, rotational transformation can 
be straightforwardly applied to digital holography. By using this technique, one 
can reconstruct images on arbitrarily tilted planes from complex-valued images 
acquired using digital holography as if the plane is parallel to the image sensor. Fig. 1. Definition of source and 

reference planes 2. Brief proof that rotational transformation satisfies Helmholtz equation 

Since discussion has been published on rotational transformation based on the physical interpretation of Fourier 
frequencies as a wave vector [1], in this report let us describe another proof based on the Helmholtz equation. 

Suppose that and are the source coordinates system and Fourier frequencies. Reference 
coordinates system  shares its origin with source one but is tilted, as shown in Fig. 1. In addition, the 
Fourier frequencies in reference coordinates are 
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. Note that Fourier frequencies are not independent of 
each other, i.e., , . Coordinates rotation is given as 

 and  using rotation matrix T. When distribution of the complex amplitude of a light field are 
given by g(x, y, 0) in the source plane (x, y, 0), complex amplitude g(x, y, z) in the source coordinates are given by 
the theory of angular spectrum of plane waves [4] as follows: 
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where F and F−1 are Fourier and inverse Fourier transformations, respectively. It is proved that this g(x, y, z) is a 
strict solution of the Helmholtz equation. 

When a rotation matrix is provided, the complex amplitude  on reference plane  is written as )0,ˆ,ˆ( yxf )0,ˆ,ˆ( yx
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Since  for any rotation matrix in general, by substituting )( 1−= ΤT t uwavaua ˆ741 =++ , vwavaua ˆ852 =++ , and 
vdudvuJdudv ˆˆ)ˆ,ˆ(=  into Eq. (2), the complex amplitude in the reference plane is rewritten as 
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When the parallax condition is fulfilled in the source or reference coordinates, i.e., wvu <<,  or wvu ˆˆ,ˆ << , Eq. 
(4) can be reduced to . In summary, complex amplitude in the source plane are 
Fourier-transformed, and then the coordinates rotation of Eq. (3) is performed in Fourier space. Finally, the rotated 
spectrum is inversely Fourier-transformed to complex amplitude in real space. 
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3. Reconstruction of tilted planar object in digital holography 

Light emitted from a planar object slanted at θ is recorded by lensless-Fourier phase-shifting digital holography [5], 
as shown in Fig. 2. In this case, g(x, y, 0) is the recorded complex amplitude and )0,ˆ,ˆ( yxf  is the reconstructed 
amplitude image on the tilted plane. Fig. 3 shows the numerical procedure for reconstruction. Spectrum G(u, v) is 
multiplied by phase factor ]),(2exp[)( dvuwidp π=  for translational propagation prior to coordinates rotation R of 
Eq. (3). 

Experimental results are shown in Fig. 4. The number of pixels of the image sensor used for recording is 
2000×2000, and the sensor pitch is 6.0×6.0 μm. λ = 532 nm. The distance between the object and image sensor is 
approximately 19.5 cm. Since lensless-Fourier type digital 
holography is used, FFT is necessary for obtaining the 
distribution of complex amplitude. The number of sampling 
and sampling pitches of the reconstructed images are 
2048×2048 and 8.1×8.1 μm, respectively. The planar object 
is slanted at approximately 70°. Fig. 4(a) is a close-up 
photograph of the planar object and (b) is reconstruction 
only using backward translational propagation. The whole 
object is not emerged due to the depth of focus in both 

Fig. 4. Photograph of object (a), its numerical reconstruction 
without (b) and with (c) rotational transformation 

(a) (b) 

(c) 

F-1

),( yxg

Coordinates
rotation

Fourier
space

Real
space

Complex
amplitude

Translational
propagation R

)ˆ,ˆ( yxf

F P(d)

Fig. 3.  Numerical procedure for reconstruction of tilted 
planar object 
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images, while all characters on the object clearly appear in Fig. 4(c) as a result of rotational transformation at θ = 
71.8°. 

4. Creation of polygon light source in CGHs 

When hidden surfaces are ignored, a cubic object can be resolved into three polygons, as shown in Fig. 5. In CGHs 
created using rotational transformation, each polygon is regarded as a surface source of light. Total object waves are 
calculated on the hologram by superimposing object waves emitted from polygons on each other.  

Figure 6 shows the procedure for calculating object waves from a polygon. In this case, g(x, y, 0) is given for 
every polygon in the local coordinates, which are also defined for each polygon. An example of local coordinates is 
shown in Fig. 5. g(x, y, 0) is designed so that its amplitude distribution forms a polygon and its phase distribution 
plays the role of a diffuser [2]. This g(x, y, 0) is referred to as the property function of the polygon. 

The property function of polygon #1 is shown in Fig. 7(a) as an example. The local coordinates of the property 
function are rotated to be parallel to the hologram after performing FFT (Fig. 7(c)), and then the complex amplitude 
is calculated by inverse FFT after translational propagation in Fourier space. 

An example of the optical reconstruction of a CGH created by these procedures is shown in Fig. 8. The number 
of pixels is 8192×4096, and pixel pitches are 2×4 μm. λ = 633 nm. 

5. Conclusion 

Rotational transformation strictly satisfies Helmholtz’s equation and makes it possible to calculate the distribution 
of complex amplitude on arbitral planes not parallel to the source plane. This technique can be applied to both 
digital holography and CGHs. 
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Fig. 6.  Numerical procedure for polygon source of light 
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Fig. 5.  Example of an object model. 
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