Computer-generated holograms for three-dimensional
surface objects with shade and texture

Kyoji Matsushima

Digitally synthetic holograms of surface model objects are investigated for reconstructing three-
dimensional objects with shade and texture. The objects in the proposed techniques are composed of
planar surfaces, and a property function defined for each surface provides shape and texture. The field
emitted from each surface is independently calculated by a method based on rotational transformation
of the property function by use of a fast Fourier transform (FFT) and totaled on the hologram. This
technique has led to a reduction in computational cost: FFT operation is required only once for calculating
a surface. In addition, another technique based on a theoretical model of the brightness of the recon-
structed surfaces enables us to shade the surface of a reconstructed object as designed. Optical recon-
structions of holograms synthesized by the proposed techniques are demonstrated. © 2005 Optical

Society of America
OCIS codes:

1. Introduction

Computer-generated  holograms for  three-
dimensional (3-D) displays, sometimes called digi-
tally synthetic holograms, are desired media for
creating 3-D autostereoscopic images of virtual ob-
jects. However, the technology suffers from two prob-
lems: the necessity for extremely high spatial
resolution to fabricate or display the holograms, and
long computation times for the creation, especially in
full parallax holograms.

For the past decade, techniques using point sources
of light have been widely used to calculate object
waves.12 This point source method is simple in prin-
ciple and potentially the most flexible for synthesiz-
ing holograms of 3-D objects. However, because it is
too time consuming to create full parallax holo-
grams,?> many methods to reduce the computation
time, including geometric symmetry,4 look-up tables,?
difference formulas,> recurrence formulas,® employing
computer-graphics hardware,” and constructing spe-
cial CPUs,? have been attempted.

Point source methods for calculating spherical
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waves emitted from point sources are commonly ray
oriented. As they trace the ray from a point source to
a sampling point on the hologram, the procedure is
sometimes referred to as ray tracing.2 However, there
are also wave-oriented methods to calculate object
fields in which fields emitted from objects defined as
planar segments®1© or 3-D distributions of field
strength! are calculated by methods based on wave
optics. The major advantage of wave-oriented meth-
ods is that they can use a fast Fourier transform
(FF'T) for numerical calculations. Therefore the com-
putation time is shorter than for point source meth-
ods, especially in full parallax holograms. However,
the optical reconstruction of accurately rendered 3-D
objects such as a shaded cube, as reported for wave-
oriented methods, was not discussed in the papers
cited above. This is so because of a lack of well-defined
procedures to generate object fields for arbitrarily
shaped surfaces that are diffusive and sometimes
have texture. The technique for shading the recon-
structed object according to such design parameters
as the position of the illumination light and the ratio
of the surrounding light is also important in creating
real 3-D images by wave-oriented methods.

In wave-oriented methods, calculating fields are
commonly based on coordinate transformation in
Fourier space.l11 A similar method based on the
Rayleigh—Sommerfeld integral has been reported
within the context of free-space beam propagation.12
Recently, the author reported a more precise formu-
lation and numerical consideration!3 as an extension
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Fig. 1. Geometry and definitions of global coordinates and tilted
local coordinates defined for a planar surface.

of an angular spectrum of plane waves4 in which
remapping the angular spectrum plays an important
role. The remapping also eases the difficulty of cre-
ating object fields in wave-oriented methods.

In this paper two techniques for synthesizing object
fields in surface models are presented for creating
3-D images by use of computer-generated holograms.
The first technique, based on the rotational transfor-
mation of wave fields presented in Ref. 13 and on
remapping of the angular spectrum, provides a
method for synthesis of the object fields. This tech-
nique makes it possible to create diffusive fields of
arbitrarily tilted planar surfaces that have an arbi-
trary shape and texture. Furthermore, another tech-
nique is also presented for avoiding unexpected
changes in brightness of the surfaces of objects. The
technique enables us to render surface objects as the
designers intended.

2. Object Model and the Property Function of Surfaces

The coordinate systems and geometry used in this
study are shown in Fig. 1. Objects consist of planar
surfaces that are diffusive and luminous by reflecting
virtual illumination. Each surface has its own two
local coordinates, called tilt and parallel. The tilted
local coordinates defined for the nth planar surface
are denoted r, = (x,, y,, 2,), defined such that the
planar surface is laid on the (x,, y,, 0) plane. A com-
plex function 4,(x,, y,) is defined on the plane to give
the nth surface such properties as shape, brightness,
diffusiveness, and texture. Thus these complex func-
tions are referred to as the property functions of the
surface.

Parallel local coordinates #, = (£,, ., 2,) are also
defined for each surface. They share their origin with
the tilted coordinates, but the axes are parallel to
those of the global coordinates. In the global coordi-
nates, denoted r = (£, 7, 2), the hologram is placed on
the (£, 9, 0) plane. All property functions of surfaces
are defined in the following form:

hn(xru yn) = an(leJ yn)\ll(xna yn)pn(xn’ yn)7 (1)
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Fig. 2. Fields emitted from surfaces with (a) a constant phase, (b)
a diffusive phase, and (c) a diffusive phase multiplied by the phase
of a plane wave propagating to a hologram.

where a,(x,, y,) is a real function that provides am-
plitudes of the property function to keep the shape
and the texture of the nth surface.

If the property function is defined only as the am-
plitude distribution, the surface yields little diffusive-
ness, as shown in Fig. 2(a). For example, a,(x,, y,)
in Fig. 1 is a simple rectangular function; i.e., the
amplitude is constant within the rectangular surface.
This situation is similar to the optical diffraction of a
plane wave by a rectangular aperture; therefore, if
the surface is visible to the naked eye, the light has
not been sufficiently diffracted by the aperture. To
give surfaces large diffusiveness, the amplitude func-
tions must be multiplied by a given diffusive phase:

\I’(xm yn) = eXp[ikd)d(xm yn)], (2)

where ¢4(x,, v,) is a phase that behaves as a numer-
ical diffuser. Random functions are candidates for the
diffusive phase, but full random functions are not
appropriate to the diffusive phase because the ran-
dom phases are discontinuous and have a large Fou-
rier frequency. Thus the random phases cause
speckles in the reconstruction and problems in nu-
merical calculation. In the research reported in this
paper, a digital diffuser proposed for Fourier holo-
grams?5 is used for phase function ¢4(x,, y,).

If a property function is given by the product of the
amplitude function and the diffusive phase, the car-
rier frequency of the field on the tilted (x,, y,, 0) plane
is zero. This forces the surface to emit light perpen-
dicularly to the surface, as shown in Fig. 2(b). If the
surface is sufficiently diffusive, a portion of the emit-
ted field may reach the hologram, but high diffusive-
ness results in high computational costs such as the
need for a great number of sampling points. There-
fore the phase of a plane wave propagating perpen-
dicularly to the hologram should be multiplied by the
two factors given above. This plane-wave factor
causes the field to propagate into the hologram, ex-
pressed by

pn(xm yn) = €exp [L(kx, nXn + ky, nyn)] ’ (3)

where k, , and %, , are the x, and y, components,
respectively, of the wave vector of the plane wave.
The property function given by hn(gcn, y,) is trans-
formed into the complex amplitude 4,(&,, 7,) in the
parallel coordinates by the method described in Sec-



tion 5 below. When this transformation is written as

iin(gem yn) = %exeyez{hn(xn, yn)}, (4)

fields from all surfaces are superimposed upon the
hologram plane as follows:

hE,9) =3 Py lhy(E 5}, (5)

where 0,, 6,, and 6, are rotation angles on each axis
and %,{} represents translational propagation
through distance d,.

3. Rotational Transformation of Property Functions

The details of rotational transformation were already
reported in Ref. 13. However, I summarize it for con-
venience in this section, because rotational transfor-
mation of wave fields is the core of techniques
proposed in this paper. Note that rotation of just a
single planar surface is presented in this section;
therefore the subscript n is omitted in this section.

A. Rotation of Coordinates in Fourier Space

The Fourier spectrum of a property function is given
in the tilted local coordinates as

H(u, v) = F{h(x, y)}

:JJ h(x, y)exp[—i2m(ux + vy)ldxdy,
B ®)

where u and v denote the Fourier frequencies in the
x and y axes, respectively. The frequency in the z axis
is not independent of u and v and is given by
wu,v) = N2 — u? — vHY2 where \ is the wave-
length. The relation among Fourier frequencies in the
parallel local coordinates [&, 0, (&, 0)] is analogous
to this and given by (@, 9) = N2 — 2% — *)Y% In
Fourier space, the frequencies [u, v, w(u, v)] can be
transformed into [&, 9, w(@,d)] by ordinary
coordinate-transformation procedures and vice versa.

Suppose that r is transformed into # by a rotation
matrix T, i.e., # = Tr and r = T '#. The frequencies
in the parallel coordinates are given as

u=aoll, 0) =ai + a0 + as(i, 0),
v=B{@, 1) = a4 + as0+ag(d, 0), (7)
where the rotation matrix is defined as
a, ay ag
T'!=|as a5 ag|. (8)

Q7 Qg Qg

Therefore the spectrum in the parallel coordinates is

given by

A

H(@, 9) = Hla(@, 0), B(@, 0)]. 9)

Complex amplitudes of the field are obtained in
parallel coordinates by inverse Fourier transforma-
tion of the spectrum in the paraxial condition!3:

h(z, $)=F YH@, 0)}

—

(10)

B. Remapping the Fourier Spectrum

In the actual numerical calculation, to use a FFT one
must sample the spectrum as well as the field at an
equidistant sampling grid within a given sampling
area. The coordinate transformation of Eq. (9), how-
ever, causes distortion and a shift of the sampling
area and points. This distortion and shift are depen-
dent on the way the tilted local coordinates are de-
fined.6

Figure 3(a) shows an example of the definition in
which the parallel coordinates # are transformed into
the tilted coordinates r by rotation of the coordinates
on the £ axis before the y axis. In this case, rotation
matrix T! is given by

cos 0, cos 6, cos 0,cos0, —sin0,
—sin 0, cos 0, 0
sin 0, cos 6, sin0,sin 0, coso,

T =
(11)

Figure 3(b) shows the sampling area of H(&, ) for
several rotation angles when hA(x,y) is sampled at
intervals of 3, = 8, = 2pum in A = 633 nm. The
sampling area of H(u,v), a 8,' X 87! square, is
distorted and shifted. Therefore, resampling accom-
panied with interpolation is necessary for using an
inverse FFT in calculating the complex amplitudes of
the field. However, simple interpolation is not suffi-
cient because the FFT algorithm does not work effec-
tively for spectra sampled far from zero frequency.
This shift can be interpreted to be a carrier frequency
observed in the parallel local coordinates.

Let us reverse the procedure of rotation of the co-
ordinates and shift the origin of Fourier space (u, v)
in the tilted coordinates. The origin of Fourier space
(@2, 0) in the parallel coordinates is inversely projected
to the frequencies (u,, vy) in the tilted coordinates by
matrix (8) as follows:

uy=a(0, 0)=as/\, v,=p~0, 0)=a¢/\. (12)
To ensure that the center of the spectrum in the
parallel coordinates is located at the origin of the
Fourier space after rotation of the coordinates, the
following new shifted Fourier space should be intro-
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Fig. 3. Schematic of rotation upon two axes: (a) a plane rotated
upon the 2 axis before the x axis and (b) resampling areas of the
Fourier spectrum at several rotation angles in the rotation scheme.

duced in the tilted coordinates:
u'=u—uy, v’ =v— v, (13)

The spectrum expressed in shifted Fourier space
(', v') is written as

Hw', v')=Hu' +uy v' +uvy). (14)

The spectrum in the parallel coordinates is obtained
by remapping spectrum H'(z', v') onto Fourier space
(@, 0) as follows:

ﬂ(ﬁ, 0)=H'(u—uy v—vy)
=H'(a(@, 0) —uo, B@, 0) —vy), (15)
where the sign for nearly equal means that an inter-
polation is required.
The Fourier spectrum in the shifted Fourier space

is obtained by application of the shift theorem of the
Fourier-transform theory to Eq. (14):

H' @', v')=%Fhx, yexpl—i2m(ux + vey)l}. (16)

4610 APPLIED OPTICS / Vol. 44, No. 22 / 1 August 2005

The exponential factor in brackets in Eq. (16) is at-
tributed to the carrier frequency observed in the par-
allel coordinates, whereas factor p(x,y) of the
property function was introduced to force the emitted
field toward the hologram, canceling the carrier fre-
quency in the parallel coordinates. In fact, the expo-
nential factors of Eq. (16) and p(x,y) cancel each
other out. Equation (16) is rewritten by substitution
of Eq. (3) as follows:

H @', v')=%alx, y)V(x, yexplil(k, — 2mu)x
+ (&, — 2wy}, 17

where the subscript n is omitted again. The wave
vector of a plane wave propagating along the 2 axis is
expressed by (0,0, 2mw/\) in parallel coordinates.
Thus the plane wave in the tilted coordinates is ob-
tained by coordinates rotation by use of matrix (8) as
follows:

kx = 2’11'(13/)\, ky = 2’17(16/)\. (18)
The spectrum of relation (15) is rewritten by substi-
tution of Eqgs. (18) and (12):

H' W', v')=Flalx, y)¥(x, y)}. (19)

As a result, the factor p(x, y) is no longer required in
the property function if the spectrum is calculated in
shifted Fourier space (1, v'). Therefore let us rede-
fine the property function as

h(x, y)=alx, y)¥(x, y), (20)
and its spectrum as
H(u, v) = %F{h(x, y)}. (21)

Consequently, the rotational transformation is
summarized as follows: First, one obtains spectrum
H(u, v) of the property function of Eq. (20) by fast
Fourier transformation. The center of the spectrum is
placed at the origin in the Fourier space. Next, the
spectrum in the parallel coordinates is obtained by
remapping spectrum H(u, v), expressed by substitut-
ing Eq. (12) into relation (15) as follows:

H@, )= H(a@, 0) — a0, 0), p@@, ) — B0, 0)).
(22)

Finally, the complex amplitudes of the field are ob-
tained in the parallel coordinates by an inverse Fou-
rier transformation of Eq. (10).

4. Holograms of a Single Surface with Texture

A. Single Axis Rotation

The hologram of a single planar surface with texture
was fabricated for verifying the technique described
in Section 5. The planar surface and the hologram are



(b) Planar  * .
object ‘\6),:80
y :
10cm
m !
16.4x8.2mm? T | HologramA + *
10§:m amera
z

—d.
Fig. 4. (a) Planar object used for fabricating the hologram of a
plane rotated upon a single axis. (b) Geometry for capturing the
reconstruction. The dimensions of texture of a checker embedded
in the property function are 16.4 mm X 8.2 mm.

sampled at intervals of 2 um in the x axis and 4 pm
in the y axis. The planar surface has sampling points
of 16,384 X 4096 and a binary texture. Amplitude
distribution a(x, y) is shown in Fig. 4(a). The surface
object was placed at £ = —10 cm and rotated only on
the y axis at an angle of 80°, as shown in Fig. 4(b). The
hologram with 8192 X 4096 pixels was encoded by a
point-oriented method and fabricated by a special
printer constructed for printing synthetic fringes.1”

The hologram is reconstructed by a 633 nm He—Ne
laser, and the reconstructed image is captured by a
digital camera placed at 2 = 10 cm. Figure 5 shows
photographs of a reconstructed image. The camera,
whose focus is fixed, was moved from left to right for
Figs. 5(a)-5(c) and back and forth for Figs. 5(d)-5(f).
The apparent size of the texture pattern changes
when the viewpoint is moved in Figs. 5(a)-5(c), while
the defocused position of the texture pattern changes
when the camera is moved because the focal plane of
the camera moves in Figs. 5(d)-5(f).

B. Two-Axis Rotation

Holograms of a single planar surface rotated on two
axes were also fabricated and optically reconstructed.
The method of rotation of two axes is the same as
shown schematically in Fig. 3. The amplitude image
with 8192 X 4096 sampling points is shown in Fig. 6.

Fig. 5. Optically reconstructed images of a hologram captured by
moving a camera (a)—(c) from left to right and (d)—(f) back and
forth.

Fig. 6. Planar object used for fabricating a hologram in two-axis
rotation.

The number of sampling points and sampling pitches
of the hologram is the same as in the single-axis
rotation. Optical reconstructions of the holograms are
shown in Fig. 7. Four holograms with different rota-
tion angles were fabricated and reconstructed. The
appearance of texture on the planar surfaces varies
according to the rotation angle.

5. Holograms of a Three-Dimensional Object and
Its Shading

Three-dimensional objects such as cubes and pyra-
mids can be built from planar surfaces. Thus, one can
synthesize the fields of these objects by superimpos-
ing the fields from the planar surfaces onto the holo-
gram. However, a problem that does not exist when
one is synthesizing a single-surface object is that the
brightness of the reconstructed surface varies, de-
pending on the angle of the surfaces. As a result,
objects are shaded as if an unexpected illumination
were throwing light. In a single-surface object, the

(0°,0°,0°) § (b)

(0°, 60°, 0°)

(c) (0°, 60°, 30°) f (d) (0°, 60°, 60°)

Fig. 7. Optical reconstructions of holograms of planar surfaces
rotated at several angles.
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Fig. 8. Model of brightness of a planar surface expressed by a
property function sampled at an equidistant grid.

change of brightness of a surface is not perceived
because there is nothing to compare with the single
surface in a piece of hologram. This unexpected and
unwanted change of brightness must be resolved if
one is to shade the object as intended.

A. Theory of Brightness of Reconstructed Surfaces

To compensate for unexpected shading it is necessary
to investigate which parameters govern the bright-
ness of the surface in reconstruction. Figure 8 is a
theoretical model that predicts the brightness of a
surface represented by sampled property function
h(x,y). Suppose that the amplitude of a property
function of a surface is a constant, i.e., that a(x, y)
= q, and suppose that a® provides optical intensity on
the surface. In such cases, the radiant flux ® of a
small area dA on the surface is given by

<I>=jf | A(x, )| *dxdy

3A

=3Aca’, (23)
where o is the surface density of the sampling points.
Assuming that the small area emits light within a
diffusion angle in a direction at 6, to the normal
vector, the solid angle corresponding to the diffusion
cone is given as ) = A/r?, where A = =(r tan 5;)? is
the section of the diffusion cone at a distance r and s,
is the diffusion angle of light that depends on diffuser
function W(x, y) of Eq. (1).

According to photometry, brightness of the surface,
observed in a direction at an angle 6,, is given by

_ do/dO

" cos 0,0A° (24)
Assuming that light is diffused almost uniformly, i.e.,
that dd/dA = ®/A, the brightness is rewritten by
substitution of d® = (®/A)dA, dQ = dA/r% and re-
lation (23) into Eq. (24) as follows:

oa’
L=——7F——. (25)
 tan” Y, cos 0,
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Fig. 9. Curves of the angle factor for several values of v.

As a result, the brightness of the surface depends
on the surface density of sampling, the diffusiveness
of the diffuser function, and the amplitude of the
surface property function. In addition, the brightness
of the surface is governed by observation angle 6,. In
other words, if several surfaces with the same prop-
erty function are reconstructed from a hologram, the
brightness varies according to the direction of the
normal vector of the surface. This phenomenon
causes unexpected shading.

Inasmuch as only a simple theoretical model has
been discussed so far, relation (25) is only partially
appropriate for measuring the brightness of optically
reconstructed surfaces of real holograms. The bright-
ness given in relation (25) diverges in the limit
0, - /2, but an actual hologram cannot produce in-
finite brightness for its reconstructed surface. Thus
relation (25) is not sufficient to compensate for the
brightness. To avoid the divergence of brightness
in relation (25), one should introduce angle factor
(1 + v)/(cos 6, + vy) shown in Fig. 9, instead of
1/cos 0,, a priori. This angle factor is unity in 6,
=0and 1 + 1/y in 6, = w/2. Consequently, the
brightness is given as an expression of

oa’ 1+
B ™ tanz (OF] (cos eu + 'y)’

(26)

where v is a parameter that plays a role in preventing
the divergence of brightness and in preventing over-
compensation. Because vy is dependent on actual
methods for fabricating holograms, such as encoding
the field or the property of recording materials, it
should be determined experimentally.

B. Compensation for Brightness and Shading Objects

The amplitude of a property function that recon-
structs a surface in a given brightness L is obtained
by solution of Eq. (26) for a as follows:

L tan® ¢, (cos 0, + v) |2

(] (1+7)

(27)

a=



Fig. 10. Optical reconstructions of unshaded hexagonal prisms (a) without brightness compensation and (b), (¢c) with compensation in

v = 0, 0.5, respectively.

However, angle 6, is unknown in synthesizing the
object field, and therefore it seems impossible to com-
pensate for the change of brightness. But holograms
are observed in a direction along the 2 axis, i.e., per-
pendicular to the hologram, because the hologram is
usually observed at a distance of more than several
tens of centimeters. Hence it is possible to approxi-
mate 0, by an angle 0, formed between the nth sur-
face and the hologram. Objects are shaded by a
method based on Lambert’s law and the diffused re-
flection model. The brightness of the nth surface, of

which the normal vector forms angle 0, with the vec-
tor of illumination, is given by

L, = Ly(cos 8, +1,), (28)
where [, is the ratio of the surrounding light to the

illumination and L, is brightness in @n = 0 and [/,
= 0. By substitution of L, of Eq. (28) into L of Eq. (27)
amplitude a, of the nth surface is given as follows:

(cos B, +1,)(cos 6, + ) v
an = aO 1 + ,Y ] (29)

(30)

Lo’lT tan2 Pgq 12
ag = T .

Here, observation angle 6, is replaced by the angle of
the normal vector, 0,.

6. Optical Reconstruction of Three-Dimensional
Objects

First, I fabricated several holograms of the same hex-
agonal prism with which to determine the value of
parameter vy. Figure 10 shows the optical reconstruc-
tion of three holograms. The reconstructed image of
the hologram without compensation for brightness is
shown in Fig. 10(a). The left-hand surface of the hex-
agonal prism, which has the largest angle 6,, is the
brightest of the object surfaces. As shown in Fig.
10(b), the hologram with compensation in vy = 0 is
contrasted to that in Fig. 10(a). Here, remember that
compensation in y = 0 leads to unlimited compensa-
tion. Therefore the surface that forms a large angle
with the hologram is dark as a result of overcompen-
sation. Figure 10(c) is also applicable to a hexagonal
prism whose brightness is compensated for by
v = 0.5. Differences of brightness disappear by proper
compensation for brightness, which dissolves borders
between surfaces.

Figure 11 shows optical reconstruction of 3-D ob-
jects whose brightness is completely compensated for
at v = 0.5. In addition, the surfaces are shaded; the
amplitudes of the surfaces are determined by use of
Eq. (29) in given virtual illumination and surround-
ing light. Arrows and numbers in Fig. 11 indicate

Fig. 11.

Optical reconstructions of 3-D objects shaded with illumination light. Cubes are illuminated from the upper right in

(a) I, = 0 and from the upper left in (b) [, = 0.7; a hexagonal prism ([, = 0.5) is shown in (c¢). Brightnesses of objects are all compensated
for at y = 0.5. Arrows and numbers in parentheses define the illumination vector in global coordinates.
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illumination vectors in global coordinates. As ex-
pected from the vectors, object surfaces are shaded in
the reconstructions.

7. Discussion

The computation time in the proposed techniques is
given by rotational transformation of the surfaces of
the object. According to Ref. 13, the computation time
of rotational transformation is dominated by FFTs,
and FFT operation must be executed twice to rotate a
planar surface. However, most of the inverse FFTs of
Eq. (10) can be omitted from calculating the total
field; just an inverse FFT operation is necessary to
create a hologram because the translational propa-
gation of the field ?,{ } can be carried out in Fourier
space. In the synthesis of holograms described in pre-
vious sections, the method of the angular spectrum of
plane waves!4 is used for the operation of the propa-
gation. Therefore the total field of Eq. (5) on the ho-
logram is expressed by

h(, 9) = %1{2 H,(t,, 0,)expli2mid (i, ﬁn)dn]},
(31)

where d,, is the distance between the (%, 7,, 0) plane
of the parallel coordinates and the hologram. Thus
the number of times a FFT is executed is N + 1, to
calculate the total field of an object composed of N
pieces of planar surface. As a result, one FF'T/surface
is approximately estimated as the computational cost
in the proposed techniques.

8. Conclusion

Full parallax computer-generated holograms of
three-dimensional surface objects were synthesized
by use of a wave-optical method. In this method, an
object is composed of some planar surfaces, and a
complex function defined for each surface retains
such properties as shape, texture, and brightness.
The fields emitted from the tilted surfaces are calcu-
lated by use of the rotational transformation of the
property function and totaled on the hologram.

When surfaces build an object, the change of
brightness that depends on the angle of view causes
unexpected shading of the surface. A theoretical
model with which to predict the brightness of the
reconstructed surface and prevent unexpected shad-
ing has been proposed. This technique allows the
object to be shaded as one intends. Finally, optical
reconstructions of holograms synthesized by use of
the proposed techniques have been demonstrated to
verify the validity of the methods.
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