LD 光源のスイッチングにより視域角を拡大した

時分割電子ホログラフィ

松田 篤史 寺口 功 松島 恭治 関西大学 システム理工学部 電気電子情報工学科 〒564-8680 大阪府吹田市山手町 3-3-35 E-mail: matsuda@laser.ee.kansai-u.ac.jp

あらまし電子ホログラフィにおいて,LD光源をスイッチングすることによりSLM 照明光源の時分割多重化を行い,水平 方向視域角を拡大する手法を提案している.試作したシステムでは,4個のLD光源で時分割再生を行うことにより複雑な光学 系や可動部品を用いずに1台の位相型SLMの水平方向視域角を4倍に拡大している.このディスプレイを用いてポリゴン法に より計算した動画ホログラムを再生した結果,両眼で良好な再生像を確認することができた.

キーワード SLM, CGH, 光源多重方式, 時分割方式, 視域角拡大

A Time-Division Electro-Holography with Enhanced Viewing-Angle by Switching LD Source

Atsushi MATSUDA Isao TERAGUCHI Kyoji MATSUSHIMA

Department of Electrical and Electronic Engineering, Kansai University

Yamate-cho 3-3-35, Suita, Osaka, 564-8680, Japan E-mail: matsuda@laser.ee.kansai-u.ac.jp

Abstract A novel technique is proposed for expanding the horizontal viewing-angle by employing time-division method in electro-holography. In this technique, electrically switched multiple laser diodes (LD) produce multiple hologram images without any complex optics and moving parts. In the prototype system, the horizontal viewing-angle of the hologram reconstructed by a single SLM is expanded four times with 4 LD sources. It is verified that the optically reconstruction of a CGH movie, calculated by the polygon-based method, is clearly viewed with two naked eyes.

Keyword SLM, CGH, Source-multiplexing, Time-division method, Enhanced Viewing-Angle

1. はじめに

計算機合成ホログラム (Computer-Generated Hologram, 以下 CGH)において広視域の再生像を得る ためには、1µm オーダーのピクセルピッチが必要であ る. 反射型空間光変調器(Spatial Light Modulator, 以下 SLM)による電子ホログラフィにおいても同様である が、この様な高解像度の SLM は、現時点では実現が困 難である.従って,現在の電子ホログラフィでは視域 角が狭いことが大きな問題となる. そのため, 高フレ ームレート SLM とガルバノミラーを用いた水平走査 表示による水平視域拡大手法が報告さている[1].しか し、この手法ではガルバノミラーという可動部品を用 いるため,その同期制御や安定性,耐震性が問題にな る. さらに, 通常のフレームレートの SLM を用いた解 像度変換光学系による水平視域拡大手法が報告されて いる[2]. しかし、この手法では水平視域は拡大される が、反面垂直視域は狭くなるという問題がある. さら

に、複数台の SLM を用いて空間分割法や時分割法を組 み合わせて再生像の水平方向視域拡大とカラー化を実 現した手法が報告されている[3,4]. 空間分割手法を視 域拡大に用いた場合,再生像のフリッカーは生じない が複数台の SLM が必要なためコストが高く,さらにシ ステムが複雑で大型化する問題がある.一方,時分割 手法を用いた場合、レーザー光源を複数光源に分離し 液晶シャッターで切り替えて SLM へ照明するため,再 生面でのフレームレートは低くなるが,1台の SLM で 実現可能であり、システムの小型化に向いている.し かしながら、シャッターと回折格子等により光源を時 分割多重する機構が必要となる.一方,著者らは共役 像を抑制できる位相変調型 SLM と 2f 光学系を用い, 複数のレーザーダイオード(以下,LD)光源をスイッチ ングすることで再生面において水平方向の高解像度化 行い、さらにキャリア信号を用いて再生像と非回折光 を分離する手法を報告している[5].

そこで本研究では、その 手法を発展させ、位相型 SLM と4f光学系を用い、 フーリエ面において像を多 重化して水平方向高解像度 化を行い、像面において水 平方向ピクセルの高密度化 を行った.これにより.ガ ルバノミラーのような可 部品やシャッターを用いず に水平方向視域角を4倍に

図1 光源多重方式時分割電子ホログラフィの構成(K=4)

拡大する手法を提案する.本手法は複雑な光学系を要 しないため,高フレームレート SLM と組み合わせるこ とで更なる多重化も可能であると考えている.

2. 水平方向視域角拡大の原理

光源多重方式時分割電子ホログラフィの光学系の 構成を図1に示す.本研究では、4f光学系による CGH の再生を行っている.

2.1 フーリエ面における水平方向高解像度化[6]

本研究では光源として複数のファイバ光源を用いる.水平方向に間隔 Δx_i で並べた K 個の光源から出射する球面波を焦点距離 f_c のコリメータレンズで平行光にして SLM に照明すると,発光する光源の位置により異なった傾きの平行光が SLM に入射する.いま SLM により H(u,v)の空間変調が生じるとすると,発光する光源の位置によりキャリア周波数が変化し変調光波は

$$G(u,v) = H(u,v) \exp\left[i2\pi \frac{f}{f_c} \Delta x_i u\right]$$
(1)

となる. ここで, f はフーリエレンズの焦点距離, また (u,v)は周波数表示した座標であり, SLM 面上の空間 座標 (x,y)とは

$$u = \frac{x}{\lambda f}, \quad v = \frac{y}{\lambda f}$$
 (2)

の関係がある.

SLM 面とフーリエ面はフーリエ変換の関係にある ことから、フーリエ面における複素振幅分布は

$$F\left\{G\left(u,v\right)\right\} = g\left(x - \frac{f}{f_c}\Delta x_i, y\right) = g\left(x - \Delta x_o, y\right)$$
(3)

となり, 光源位置に対する再生位置のシフトは

$$\Delta x_o = \frac{f}{f_c} \Delta x_i \tag{4}$$

となる.また、一つのフーリエ変換像の幅 wは、

$$w = \frac{\lambda f}{p} \tag{5}$$

と表される.ここで, pは SLM のピクセルピッチであ

る.ホログラムを時分割再生し単一のフーリエ変換像 として得るためには、時分割で再生される像をフーリ エ面上に隙間なく正確に配置する必要がある.そのた めには、

$$\Delta x_o = w \tag{6}$$

となる必要がある.従って、(4)式から光源間隔を

$$\Delta x_i = \frac{f_c}{f} w = \frac{\lambda f_c}{p}$$
(7)

とする必要があり、コリメータレンズの焦点距離のみから光源間隔が決定されることがわかる. これによりフーリエ面上に Kw×wサイズの切れ目のない単一のフーリエ変換像が得られ、水平方向解像度が K 倍に拡大される.

2.2 像面における水平方向分解能の高密度化

SLM のピクセル数を $N_x \times N_y$ とすると、1つの光源に よるフーリエ変換像の水平方向と垂直方向のサンプリ ング間隔はそれぞれ

$$p'_{x} = \frac{\lambda f}{N_{x}p}$$
, $p'_{y} = \frac{\lambda f}{N_{y}p}$ (8)

と表される. 複数の光源によるフーリエ変換像を 1 つの像と見なすと,水平方向と垂直方向の像面ピッチ はそれぞれ

$$p''_{x} = \frac{\lambda f}{N'_{x} p'_{x}}$$
, $p''_{y} = \frac{\lambda f}{N'_{y} p'_{y}}$ (9)

と表される.ここで、 $N'_x \times N'_y$ はフーリエ変換像の総サ ンプリング数である.いま、水平方向に並んだ K 個の セグメントのフーリエ変換像を1つの像と考えている ため、水平方向サンプリング数は $N'_x = KN_x$,垂直方向 サンプリング数は $N'_y = N_y$ となる.従って、水平方向 と垂直方向像面ピッチは(9)式からそれぞれ

$$p_x'' = \frac{p}{K} \tag{10}$$

$$p_{y}'' = p \tag{11}$$

となる.

このように, K 個の光源をスイッチングすることにより,水平方向像面ピッチは 1/K 倍となり,水平方向

映像情報メディア学会技術報告(映情学技法) Vol.35, No.42, pp.23-26. ITE Technical Report Vol.35, No.42, pp.23-26. 3DIT2011-85, IDY2011-55, IST2011-64 東京, NHK 技研 (2011.10.21)

表1 物体光波の数値合成に用いたパラメータ

ホログノム	
ピクセル数($N_x \times N_y$)	1920×1080
ピクセルピッチ p	$8 \ \mu \ m \times 8 \ \mu \ m$
サイズ	15.36mm×8.64mm
再生波長 λ	637nm
フーリエレンズ焦点距離 f	200mm
キャリア信号によるシフト量	8.0mm 上方
物体光波	
ピクセル数	8192×2048
像面ピッチ <i>p/K×p</i>	$2\mu m \times 8\mu m$
像面サイズ	15.36mm×8.64mm
3次元物体とシーン	
the Venus のポリゴン数	718
(前面のみ)	

視域角が拡大される.また,同様に垂直方向視域角を 拡大することも可能である. 光源数を増加させ高フレ ームレート SLM で高速同期切り替えを行うことで,更 なる視域角拡大を実現できるが、それに伴いファイバ 光源の総開口数を考慮して光源を緻密に配置する必要 がある.

3. ホログラムの計算

提案手法を用いて CGH の再生を試みた. 図 2 にホ ログラムの計算に用いた物体モデルを示す.3Dシーン は超高解像度 CGH の The Venus と同様の構成とし[7], ホログラム面から奥行き 20[mm]の位置にチェック柄 の壁紙を配置し、5[mm]の位置にミロのヴィーナスを 模した3次元物体を配置している.物体光波計算には ポリゴン法を用い、ファントムイメージとなることを 防ぐためシルエット法[8]を用いている.

物体光波の数値合成に用いたパラメータを表1に示 す. 光源数4個で水平方向視域角を4倍に拡大する場 合は,図3に示すように物体光波の水平方向サンプリ ングピッチを垂直方向の 1/4 倍, サンプリング数を

図 3 SLM に表示する CGH の計算手順

4 倍にして計算する. 取得した 8K2K サイズの物体光 波を逆フーリエ変換するとフーリエ変換像を得る.こ れを水平方向に4セグメントに分割し、各セグメント をさらに逆フーリエ変換し、位相コーディングする. さらにキャリア信号で変調を行い, SLM のサイズにカ ットしている. なお, キャリア信号で変調し, 各セグ メントの再生像の周期の半分だけ上方に再生像のシフ ト[6]を行い、フーリエ面で開口を用いて非回折光の遮 蔽を可能にしている.

次に, 球体が壁紙の前でバウンドする様子を収めた 73 フレームの動画ホログラムを計算した.パラメータ は表1と同様で壁紙のサイズは20[mm]四方で,球体の サイズは直径 3[mm]である.動画ホログラムの計算時 間は、リアルタイム計算用のチューニングは特に行っ ていない状態で, Core i7-2600K を用いて, 10 分程度 であった.得られた動画ホログラムを再生フレームレ ート 15[fps]で再生した場合,再生時間は約5秒間であ る.

4. 光学再生

光学再生実験に用いた光学系を図4に示す.ファイ バ光源は、波長 637[nm]の偏波保持ファイバカップリ ング LD である. (7)式より光源間隔 Δx_i = 11.9 [mm]で配 置した 4 個のファイバ光源の出力を焦点距離 f.=150 [mm]のコリメータレンズで平行光とし, 焦点距離 f = 200 [mm]のレンズで 4f 光学系を構成した. SLM に は、ピクセルピッチ p=8[µm]で解像度 1920×1080, フレームレート 60[Hz]の HOLOEYE 社製 PLUTO を用 いた.

時分割再生を行うためには, SLM と光源を同期して 60[Hz]で切り替えて制御を行う必要がある. そのため, MS Windows の DirectX を用いてグラフィックボード を直接制御し, SLM への映像信号出力と同時に垂直同 期信号を取得し、それを主タイミング信号としてファ

図4 光学再生実験に用いた光学系

イバ光源の点滅を制御した.また,フーリエ面上に多 重化されたフーリエ変換像を横 62.5[mm]×縦 14.5[mm]サイズの長方形状の開口を設置し非回折光を 遮蔽した.3次元物体にピントを合わせて左右に9°の 範囲に視点を移して撮影した再生結果を図5に示す. 壁紙の模様に注目すると3次元物体との重なり具合が 視点を移動させることで変化を観察することができた. 従って,再生像の水平方向視域角は実測で約 18°であ ることがわかった.また,動画ホログラムの再生像の 例を図6に示す.

この結果より,提案手法を用いた再生像は水平方向 視域角が従来の再生方法と比較して約4倍に拡大して いることを確認した.

5.まとめ

本研究では,LD 光源をスイッチングすることによ り光源多重化と時分割再生を行い水平方向視域角を拡 大する手法を提案し有効性を確認した.また,ポリゴ ン法により計算した動画ホログラムを提案手法で再生 した結果,両眼で良好な再生像を観測することができ た.しかし,動画としては再生フレームレートが低い ため多少フリッカーが生じていることを確認した.

謝辞

本研究は日本学術振興会の科研費(21500114)の助成 を受けたものである.

The mesh data of The Venus object is provided courtesy

of INRIA by the AIM@SHAPE Shape Repository.

文 献

- [1] Y. Takaki, N. Okada: "Hologram generation by horizontal scanning of a high-speed spatial light modulator", Appl. Opt. **48**, 3255-3260(2009).
- [2] Y. Takaki, Y. Tanemoto: "Modified resolution redistribution system for frameless hologram display module", Opt. Express 18, 10294-10300(2010).
- [3] T. Senoh, T. Mishina, K. Yamamoto, R. Oi, Y. Ichihashi, T. Kurita: "Full-Color Wide Viewing-Zone-Angle Electronic Holography System", OSA Topical Meeting on Digital Holography and Three-Dimensional Imaging 2011, DTuA3(2011).
- [4] T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita: "Wide viewing-zone-angle full-color electronic holography system using very high resolution liquid crystal display panels", SPIE Proc. #7957, 795709(2011).
- [5] 松田篤史, 寺口功, 松島恭治: "光源多重方式時分 割電子ホログラフィ", 3D コンファレンス 2011 講 演論文集, 114-117(2011).
- [6] 松田篤史, 細川俊彰, 松島恭治: "キノフォームタ イプ電子ホログラフィにおけるキャリア信号の 導入と sinc 補正", 3D コンファレンス 2010 講演論 文集, 129-132(2010).
- [7] K. Matsushima, S. Nakahara: "Extremely high -definition full-parallax computer-generated hologram created by the polygon-based method", Appl. Opt. 48, H55-H60(2009).
- [8] 近藤,松島: "シルエット近似を用いた全方向視差 CGH の隠面消去",電子情報通信学会論文誌 J87-D-II, 1487-1494(2004).

図6動画ホログラムの再生像の例

図5光源多重方式時分割再生手法を用いた光学再生結果