デジタル化ホログラフィにおける実物体像の拡大・縮小編集

Resizing captured objects in digitized holography

藤田大知¹ 有馬恭旭¹ 松島恭治¹ 中原住雄² Fujita Daichi, Yasuaki Arima, Kyoji Matsushima, Sumio Nakahara ¹関西大学 システム理工学部 電気電子情報工学科 ¹Department of Electrical and Electronic Engineering, Kansai University ²関西大学 システム理工学部 機械工学科

²Department of Mechanical Engineering, Kansai University

ABSTRACT

Digitized holography is a modern technique in holography and makes it possible to digitally edit the 3D scene after recording object fields as well as digitally archive and transmit the hologram. However, the digital editing of the 3D scene in digitized holography has some restrictions. The captured object fields, for example, cannot be resized unlike conventional digital images, because the fields include phase information. To get over this restriction, we tried to digitally resize the image of the real objects in digitized holography by employing numerical image formation of the captured field. A high-definition CGH, whose 3D scene is composed of the resized objects, is demonstrated for verifying the proposed technique.

Keyword: CGH, デジタイズドホログラフィ, 数値的結像シミュレーション, 光波デジタル信号処理

1. はじめに

近年,計算機合成ホログラム(CGH)の発達により "The Venus"[1]や"Shion"[2,3]といった奥行き感のあ る美しい立体像が再生できるようになって来ている. これらは数値モデルで表された仮想物体を再生する だけであったが,最近さらに,実物体を CGH とし て 3D シーンに取り込むデジタイズドホログラフィ (Digitized Holography,デジタル化ホログラフィ)と呼 ぶ技術が開発されている[4,5].デジタイズドホログ ラフィでは,イメージセンサを用いたデジタルホロ グラフィ(以下,DH)によって実在物体光波をデジタ ル的に記録し,それを 3D シーン内に埋め込んで CGH として再生する.そのため,古典的なホログラ フィと同様,記録した光波を完全に再生できるため 輻輳調節矛盾などが一切起きない.一方,古典的な

藤田大知

fujita@laser.ee.kansai-u.ac.jp

関西大学システム理工学部電気電子情報工学科 〒564-8680 大阪府吹田市山手町 3-3-35 ホログラフィと異なり,物体光波やホログラムをデ ジタルデータとして扱うため,ホログラム撮影後に 3D シーンをデジタル編集することができる.

しかし,従来のデジタイズドホログラフィは,記 録した実在物体をシーン中に配置してそのまま再生 するのみであり,実際には 3D シーンの編集にはま だまだ制約が多かった.これは,写真のような光強 度のみを記録したデジタル画像とは異なり,DH で 得られた実在物体光波は位相情報を含んでいるため, デジタル画像のように簡単に拡大/縮小することが できないことが原因である.

そこで本研究では DH で得られた実在物体光波を 計算機上で数値的に結像することによって,その像 の拡大/縮小を試みた.さらに,拡大/縮小を行った 実在物体光波を用いて 3D シーンの作成を試みた.

2. DHによる実在物体光波の記録

実在物体光波の取得には、レンズレスフーリエ合 成開口法を用いる[4,5]. これによって得られる実在 物体光波のサンプリング間隔は

Fig. 1. The experimental setup for capturing large-scaled wave-fields by lensless-Fourier synthetic aperture DH.

$$\Delta x = \frac{\lambda d_R}{N_x \delta_x}, \quad \Delta y = \frac{\lambda d_R}{N_y \delta_y} \tag{1}$$

となる.ここで、 λ は波長であり、 d_R は参照点光源-イメージセンサ間距離、 N_x 、 N_y はそれぞれ x, y 方向 のサンプリング数、 δx 、 δy はセンサピッチである.

Fig.1 に本研究に用いた記録光学系を示す. 用いた イメージセンサの解像度は 3000 × 2200 pixel, セン サピッチは 3.5 × 3.5 µm である. また, M3 をピエゾ 素子に取り付け, 位相シフト法を行うことによって 直接像のみの物体光波を取得している.

本研究では、合成開口法により縦横共に約 11.4 cm の複素振幅分布を記録した.本研究で光波記録に用 いたパラメータを Table 1 にまとめる.また、取得し た複素振幅画像を Fig.2(a)に示し、これをフーリエ変 換して得られた物体光波の振幅像を(b)に示す.

3. 数値レンズ結像を用いた物体光波の拡大と 縮小

3.1. 拡大と縮小の原理

Fig.3 に数値的レンズ結像における座標系と配置を示す.ここで、本研究では座標系の原点をレンズ面

Fig.2. Captured complex amplitudes (amplitude image) (a) and its Fourier-transform (amplitude image) (b).

Table 1 Parameters used for capturing object fields.

Wavelength	532 nm
Total number of samplings of	34,439 × 32,995
captured field	
Number of samplings used for	32,768 × 32,768
numerical calculation	
Sensor pitches	$3.5~\mu\text{m}\times3.5~\mu\text{m}$
Number of capturing	12×16
Overlap of captured area	0.5 mm
Distance of reference point	215 mm
source (D_R)	

の中心であるとし,前節で記録した実在物体光波が レンズ面から距離 a 離れた入力面 S にあるとする. また,レンズ面から後方に距離 b 離れた位置を結像 面とする.したがって,レンズの焦点距離を f とす るとレンズの公式から

$$\frac{1}{a} + \frac{1}{b} = \frac{1}{f} \tag{2}$$

の関係がある.また、像の倍率 M は

$$M = \frac{b}{a} \tag{3}$$

となる.

これらの関係から結像面における物体光波を求めるためには、S上の物体光波 $g_s(x, y, -a)$ をレンズ面まで数値的に伝搬し

$$u^{-}(x, y, 0) = P_{a} \left\{ g_{s}(x, y, -a) \right\}$$
(4)

を得る. ここで *P*_a{}はシフテッド角スペクトル法[6] によって光波を距離 a 伝搬する演算を表している. レンズ透過後の光波は

 $u^+(x,y,0) = u^-(x,y,0)t(x,y,0)$ (5) となる.ここでt(x,y)はレンズ位相関数であり,

$$t(x, y, 0) = \exp\left[-i\frac{\pi}{\lambda f}\left(x^2 + y^2\right)\right]p(x, y)$$
(6)

で与えられる.本研究では瞳関数 *p*(*x*, *y*)を半径 *R*の 円形開口関数とした.結像面における物体光波は, 距離 *b*の伝搬計算により

$$g_{G}(x, y, b) = P_{b}\left\{u^{+}(x, y, 0)\right\}$$
(7)

となる.

Fig.3. Coordinates system and geometry used for numerical image formation.

3.2. 結像パラメータの条件

倍率Mの数値的レンズ結像を行うには,式(2)と式 (3)の関係を満たすa,b,fを設定すればよい.しか しながら,それ以外にも以下の条件を満たす必要が ある.

離散化されたレンズ位相がエイリアジング誤差を 生じないためには、式(6)のレンズ位相を

$$t(x, y) = \exp\left[-i\phi(x, y)\right] \tag{8}$$

と書き換え、位相分布の局所的な信号周波数

$v_x =$	$\left \frac{1}{2\pi}\frac{\partial\varphi(x,y)}{\partial x}\right = \left \frac{x}{\lambda f}\right ,$	(9)
$v_y =$	$\left \frac{1}{2\pi}\frac{\partial\varphi(x,y)}{\partial y}\right = \left \frac{y}{\lambda f}\right $	(9)

の両方がナイキストの定理を満たさなければならない.したがって,

$$2\nu_{x} < \Delta x_{l}^{-1}, \quad 2\nu_{y} < \Delta y_{l}^{-1}$$
 (10)

を満たす必要がある. ここで $\Delta x_{l_i} \Delta y_l$ はレンズのサ ンプリング間隔である. したがって,半径 R の瞳関 数では

$$\frac{\lambda f}{2\Delta x_l} > R$$
, $\frac{\lambda f}{2\Delta y_l} > R$ (11)

を満たさなければならない. すなわち,数値的レン ズ結像でエイリアジング誤差が発生しないためには, レンズの F 値が,

$$F = \frac{f}{2R} > \frac{\Delta x_l}{\lambda} \text{ and } \frac{\Delta y_l}{\lambda}$$
(12)

Table 2 Parameters of numerical lens.

Number of samplings	131,072×131,072
Sampling intervals	1.0 μm ×1.0 μm
Radius	6.55 cm
Focal length	25.0 cm

を満たすようにしなければならない. このような条件を満たす F 値であればどのような値でも良いことになるが,実際は物体の大きさや最大回折角度により光の広がりが制限されるため,小さなレンズではそのすべてを結像できない.そこで本研究では,計算機のメモリが許す範囲で大きいレンズ径を設定し,次に式(12)を満たすように f を設定した. Table 2 に用いた数値レンズのパラメータを示す.また,これらの条件を満たしたうえで物体の拡大/縮小を行なった結果をFig.4 に示す.(a)は*M*=0.25 倍,(b)は*M*=1.5倍した拡大/縮小した結果である.

3.3. 結像後の見かけの視域角

本研究ではレンズのサンプリング間隔を物体光波 のサンプリング間隔と等しくしている.この場合, 式(11)を満たすレンズでは,半径 *R*よりもレンズ面 までに広がる物体光波のほうが大きくなる.よって, レンズのカットオフ周波数のほうが低くなり,物体 光波が劣化する.この時,Fig.3に示した角度 *θ*_bは

$$\theta_{b} = \tan^{-1} \frac{R}{b} = \tan^{-1} \frac{1}{2(M+1)F}$$
(13)

となり,結像後の視域角は拡大率により変化するが, CGH 自体の最大回折角度を超えることはできない. しかし,オーバーサンプリングを行ない,レンズ位

Fig. 4. Amplitude images of the resized object fields.

3次元画像コンファレンス 2012 講演論文集, P-13, pp.140-143(2012.7.13)

Table 5 Farameters used for creating mainsters	Table 3	Parameters	used for	creating	"Hamsters"	
--	---------	------------	----------	----------	------------	--

Number of pixels	65,536 × 65,536 pixels
Pixel pitches	$1.0 \ \mu m imes 1.0 \ \mu m$
Wavelength in calculation	532 nm
Position of reference light	(0, -40.8, -280) mm
Reconstruction wavelength	632 nm

Fig. 5. 3D scene of the CGH "Hamsters" composed of numerically resized object fields.

相関数と CGH のサンプリング間隔を記録物体光波 のそれより小さくした場合には,見かけの視域角を 記録光波の視域角より拡大することができる.

4. 拡大/縮小編集を用いた実在物体光波の CGH

Fig.5 に拡大/縮小編集を行なった実在物体光波を 用いて構成した 3D シーンの配置を示す.また, "Hamsters"と名付けたこの CGH のパラメータを Table 3 に示す.この CGH の光学再生像を左右にア ングルを変えて撮影をおこなった結果を Fig.6 に示 す.この結果からわかるように物体像は計算通りに 拡大/縮小が行われており,提案手法が有効であるこ とが確認できる.

5. まとめ

本研究では、DH で取得した実在物体光波に対し

て,数値的レンズ結像を用いて像の拡大/縮小を試み た.その結果,実在物体光波の位相情報を失うこと なく拡大/縮小編集が可能であることを示した.また, 拡大/縮小編集を行なった実在物体光波を用いて 3D シーンの作成を行なった.これによりデジタイズド ホログラフィにおけるデジタル編集の自由度が広が ったと考える.

謝辞

本研究は、日本学術振興会の科研費(24500133), および平成 24 年度関西大学学術研究助成金(共同研 究)の助成を受けたものである.

文 献

- K. Matsushima, S. Nakahara: "Extremely High-Definition Full-Parallax Computer-Generated Hologram Created by the Polygon-Based Method", Appl. Opt. 48, H54-H63 (2009).
- [2] H. Nishi, K. Matsushima, S. Nakahara: "Rendering of specular surfaces in polygon-based computer-generated holograms", Appl. Opt. 50, H245-H252 (2011).
- [3] K. Matsushima, H. Nishi, S. Nakahara: "Simple wave-field rendering for photorealistic reconstruction in polygon-based high-definition computer holography", J. Electron. Imaging 21, 023002(2012).
- [4] K. Matsushima, Y. Arima, S. Nakahara: "Digitized holography: modern holography for 3D imaging of virtual and real objects", Appl. Opt. 50, H278-H284 (2011).
- [5] 有馬,松島,中原:"デジタル化ホログラフィによる実在物体と仮想物体の混合3次元再生",3次元画像コンファレンス2011 講演論文集, 182-185(2011).
- [6] K. Matsushima: "Shifted angular spectrum method for off-axis numerical propagation", Opt. Express 18, 18453-18463 (2010).

Fig. 6. Optical reconstruction of the fabricated CGH "Hamsters". Photographs (a)-(c) are taken from different viewpoints.